• Title/Summary/Keyword: 추력 계수

Search Result 119, Processing Time 0.02 seconds

Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers (전산유체역학을 이용한 항공기 프로펠러 공력특성 연구)

  • Cho, Kyuchul;Kim, Hyojin;Park, Il-Ju;Jang, Sungbok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.917-926
    • /
    • 2012
  • The analysis of aerodynamic characteristics for aircraft propellers is studied to develop high efficiency composite propellers. It is to verify the accuracy and reliability of predicting the efficiency characteristics of aircraft propellers by applying nonlinear numerical analysis. The numerical simulation method incorporated the CFD code, which is based on RANS (Reynolds Averaged Navier-Stocks) equation. The study includes a comparative analysis between the numerical simulation results and the wind tunnel test results of the full-scale aircraft propeller. The comparison shows that thrust and power coefficients of the propeller calculated by nonlinear numerical analysis are higher than those based on the results generated from the wind tunnel test. The efficiency of the propeller calculated by numerical analysis matches closely to the efficiency based on the wind tunnel test results. The verification results are analyzed, then, will be used in optimizing the design and manufacture of the subject aircraft propeller studied.

A Study of the Gas Flow through a LNG Safety Valve (LNG 안전밸브를 지나는 기체 유동에 관한 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • A LNG safety valve functions to control a constant pressure inside the LNG line of transportation, and the flow through it accompanies with noise and vibration which affect adversely on the system. The present study aims at understanding the flow physics of LNG safety valve for a practical design of LNG safety valve. A computational work using the two-dimensional, axisymmetric, compressible, Navier-Stokes equations is carried out to simulate the gas flow through the LNG safety valve, and compared with the theoretical results. It is found that the shape of valve sheet and the gap size are the key parameters in determining the gas dynamic forces on the valve sheet, and there exists a distance between nozzle exit and valve sheet in which the thrust coefficient at the valve sheet increases abruptly.

Calculation of the Effective Wake in a Radially Sheared Inflow (유효반류 계산에 관한 연구)

  • E.D.,Park;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 1990
  • A theorectical method is presented for the calculation of the effective wake in an axisymmetric sheared inflow. The effective wake is essential in the design of optimal propulsor and in the reduction of propulsor induced vibration and noise. The nominal wakes are mathematically modelled and the effective wakes are calculated using the computer program developed on the basis of the linear momentum theory. The results show that shear effects arc dominant near the hub and the effective wakes reveal some differences near the hub for the moderately and heavily loaded propulsors but they arc well coincided with the other experimental or theorectical results for the lightly loaded propulsors. To improve the results it may be necessary to consider nonlinear terms neglected in this study and body boundary condition on hub.

  • PDF

An analysis of the performance of sector shaped, pivoted pad thrust bearings in consideraation of the inlet pressure (패드의 선단압력을 고려한 부채꼴 모양의 피봇식 추력베어링의 성능해석)

  • 김종수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1063-1070
    • /
    • 1988
  • The influence of the inlet pressure on bearing performance of tilting pad bearings in laminar regime is examined. A simple flow model is presented to calculate the inlet pressure in inlet flow that occurs at a short distance ahead of the bearing inlet. The bearing performances are obtained, load capacity, friction torque and lubricated flow-rate, etc, numerically for the inlet pressure boundary conditions with and without pressure jump. The computed results of both cases show that bearing performance and the optimum pivot position changes remarkably according to the bearing operating conditions. The influence of the inlet pressure on bearing performance must be considered to analyze the bearing performance precisely.

Aerodynamic Characteristics of a Three-Dimensional Wing in Heave Oscillation (히브진동하는 3차원 날개 공력특성)

  • Chin, Chul-Soo;Kim, Tae-Wan;Lee, Hyoung-Wook;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.905-911
    • /
    • 2011
  • With the progress of micro actuator technology, studies on the development of micro air flapping wing vehicles are actively undergoing. In the present study, the changes of both lift and thrust characteristics of the wings are investigated using a boundary element method. Lift of the heaving wing is not generated when the wing is beating with smaller frequencies than 1 Hz. Thrust increases with amplitude and frequency. As the wing's taper and aspect ratios increase, both lift and thrust also increase. Results on the pitching oscillation and flapping motion will be included in the future work.

An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control (추력방향조종용 제트베인의 3차원 온도분포 해석)

  • Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.283-291
    • /
    • 2011
  • A computational investigation has been carried out to study the heat transfer characteristics of jet vane assembly used for the thrust vector control(TVC) of a vertical launch motor. In this study, the coefficients of convective heat transfer on the jet vane are calculated using the solutions of thermal boundary-layer equation and several semi-empirical equations. The calculation of 3-dimensional temperature distribution for the jet vane assembly was performed using the softwares called PATRAN and ABAQUS. The accuracy of the present numerical method is verified by comparing with the measured and calculated temperatures within jet vane shaft. The temporal variation of jet vane temperatures for three deflection angles(0o, 12.5o, 25o) was discussed.

  • PDF

Performance Dispersion Analysis and Applications of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체 로켓 엔진의 성능 분산 해석 및 활용)

  • Nam, Chang-Ho;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.191-195
    • /
    • 2006
  • It is definitely required to control dispersion of the rocket engine performance in order to accomplish the mission of a launch vehicle successfully. A performance dispersion analysis was conducted for a gas generator cycle liquid rocket engine and the required pressure drops were estimated for engine tunning. As a result, the vacuum thrust dispersion of the engine was from +9.1% to -8.7% and the mixture ratio deviated from +9.7% to -9.6% from the nominal value due to the errors of components and the engine inlet condition of propellants. The required pressure drop in the LOx line to the combustor is higher than in the fuel line for same mixture ratio change.

  • PDF

A Numerical Study of Aerodynamic Characteristics in Oscillating Airfoils along Frequencies and Amplitude (진동하는 익형의 진동수와 받음각 진폭에 따른 공력특성)

  • Lee, Gang-Mun;Park, Jae-Yeong;Lee, Seong-Gi
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.569-574
    • /
    • 2015
  • 지난 수십 년간 유체역학적인 관점에서 곤충이나 새의 움직임을 모방하기 위해 진동하는 익형(pitching airfoil)과 동적 실속에 관한 많은 연구가 진행되어 왔다. 그러나 유동박리가 일어나지 않는 범위 내에서 진동하는 익형의 특성에 대한 연구는 보기 드물다. 또한 기존의 유동박리가 일어나지 않는 영역에서 익형의 진동 현상에 대해 수행된 연구는 수중과 같이 낮은 레이놀즈수에서 수렴되었기 때문에, 공기 중과 같이 높은 레이놀즈수에서 유동현상과 다른 특성을 보여주고 있을 수 있다. 따라서 본 연구는 높은 레이놀즈수에서의 다양한 환산 진동수, 받음각진폭, 익형에 따른 공력특성을 분석하였다. 그 결과, 익형의 진동으로 인한 양력계수의 차이는 작음을 알 수 있었다. 그러나 높은 환산 진동수에서 익형의 항력계수가 감소하는 경향이 나타나며, 이로 인해 높은 환산 진동수에서 수치적으로 추력이 발생할 수 있음을 확인하였다.

  • PDF

Distribution Approximation of the Two Dimensional Discrete Cosine Transform Coefficients of Image (영상신호 2차원 코사인 변환계수의 분포근사화)

  • 심영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.3
    • /
    • pp.130-134
    • /
    • 1985
  • In two-dimensional discrete cosine transform(DCT) coding, the measurements of the distributions of the transform coefficients are important because a better approximation yields a smaller mean square distorition. This paper presents the results of distribution tests which indicate that the statistics of the AC coefficients are well approximated to a generalized Gaussian distribution whose shape parameter is 0.6. Furthermore, from a simulation of the DCT coding, it was shown that the above approximation yields a higher experimental SNR and a better agreement between theory and simulation than the Gaussian or Laplacian assumptions.

  • PDF

Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices (오리피스 형상에 따른 발사관 내 부가추력 특성 연구)

  • Yoon, Jin-Young;Lim, Beom-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.