• Title/Summary/Keyword: 최적변수

Search Result 3,035, Processing Time 0.032 seconds

Optimizing Ingredients Mixing Ratio of Mungbean Pancake (빈대떡의 재료혼합비율의 최적화)

  • Lee, J.H.;Shin, E.S.;Kweon, B.M.;Ryu, H.S.;Jang, D.H.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1274-1283
    • /
    • 2005
  • The sensory acceptability, texture profile analysis and nutritional evaluation were peformed in Korean traditional mungbean pancake (MPC) and modified MPC containing squid meat and soybean to standardize the recipes for healthy fast food market potentiality. Optimal ingredient formulations were revealed as mung-bean 55$\%$, pork 13$\%$ and vegetables 32$ \%$ for traditional MPC, and pork 3$\%$, squid 42$\%$ and soybean 55$\%$ for modified MPC using response surface methodology. Flavor and hardness correlated highly with overall accept-ability rather than appearance and color of traditional MPC. Higher squid levels raised adhesiveness, springi-ness and resiliences of modified MPC, but soybean decreased these textural attributes. Protein, lipid and total calorie of modified MPC were lower than those of traditional MPC. Computed protein efficiency ratio (C-PER) and degree of gelatinization of modified MPC were superior than traditional MPC.

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Optimization of Extraction of Effective Components from Vitis coignetiae, the Crimson Glory Vine (산머루 유용성분 추출공정의 최적화)

  • Jo, In-Hee;Kim, Chang-Youn;Lee, Tae-Wook;Lee, Geun-Ho;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.659-666
    • /
    • 2010
  • A central composite design was used to investigate the effects of the three independent variables of extraction temperature ($X_1$), ethanol concentration ($X_2$), and extraction time ($X_3$), on dependent variables including yield ($Y_1$), total phenol levels ($Y_2$), electron-donating ability ($Y_3$), brownness ($Y_4$), and reducing sugar content ($Y_5$) of Vitis Coignetiae. Yield was affected by extraction temperature and time. The maximum yield was obtained at $91.62^{\circ}C(X_1)$, and, 25.37% (w/v) ethanol ($X_2$), after 317.70 min of extraction ($X_3$), evident as a saddle when displayed graphically. Total phenol levels were essentially unaffected by extraction temperature or ethanol concentration, but were highly influenced by extraction time. The maximum total phenol levels was 4,763.46 GAE mg/100 g obtained at $88.20^{\circ}C(X_1)$, and 47.79% (w/v) ethanol ($X_2$), after 349.32 min ($X_3$) of extraction. Electron-donating ability (EDA) was affected by extraction temperature and time. Maximum EDA was 55.90% at $86.72^{\circ}C(X_1)$, 50.61% (w/v) ethanol ($X_2$), and 265.96 min ($X_3$) of extration time, again shown by a graphical saddle. Brownness was affected by extraction time. The maximum extent of brown coloration was obtained at $82.66^{\circ}C(X_1)$, 99.27% (w/v) ethanol ($X_2$), and 252.63 min of extraction time ($X_3$), once again shown by graphical saddle. The maximum reducing sugar content was obtained at $96.24^{\circ}C(X_1)$, 22.59% (w/v) ethanol ($X_2$), and 216.06 min extraction time($X_3$).

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.

Process Optimization of Dextran Production by Leuconostoc sp. strain YSK. Isolated from Fermented Kimchi (김치로부터 분리된 Leuconostoc sp. strain YSK 균주에 의한 덱스트란 생산 조건의 최적화)

  • Hwang, Seung-Kyun;Hong, Jun-Taek;Jung, Kyung-Hwan;Chang, Byung-Chul;Hwang, Kyung-Suk;Shin, Jung-Hee; Yim, Sung-Paal;Yoo, Sun-Kyun
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1377-1383
    • /
    • 2008
  • A bacterium producing non- or partially digestible dextran was isolated from kimchi broth by enrichment culture technique. The bacterium was identified tentatively as Leuconostoc sp. strain SKY. We established the response surface methodology (Box-Behnken design) to optimize the principle parameters such as culture pH, temperature, and yeast extract concentration for maximizing production of dextran. The ranges of parameters were determined based on prior screening works done at our laboratory and accordingly chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 1, 5, and 9 g/l yeast extract. Initial concentration of sucrose was 100 g/l. The mineral medium consisted of 3.0 g $KH_2PO_4$, 0.01 g $FeSO_4{\cdot}H_2O$, 0.01 g $MnSO_4{\cdot}4H_2O$, 0.2 g $MgSO_4{\cdot}7H_2O$, 0.01 g NaCl, and 0.05 g $CaCO_3$ per 1 liter deionized water. The optimum values of pH and temperature, and yeast extract concentration were obtained at pH (around 7.0), temperature (27 to $28^{\circ}C$), and yeast extract (6 to 7 g/l). The best dextran yield was 60% (dextran/g sucrose). The best dextran productivity was 0.8 g/h-l.

Optimization of PS-7 Production Process by Azotobacter indicus var. myxogenes L3 Using the Control of Carbon Source Composition (탄소원 조성 조절을 이용한 Azotobacter indicus var. myxogenes L3로부터 PS-7 생산 최적화)

  • Ra, Chae-Hun;Kim, Ki-Myong;Hoe, Pil-Woo;Lee, Sung-Jae;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • The proteins in whey are separated and used as food additives. The remains (mainly lactose) are spray-dried to produce sweet whey powder, which is widely used as an additive for animal feed. Sweet whey powder is also used as a carbon source for the production of valuable products such as polysaccharides. Glucose, fructose, galactose, and sucrose as asupplemental carbon source were evaluated for the production of PS-7 from Azotobacter indicus var. myxogenes L3 grown on whey based MSM media. Productions of PS-7 with 2% (w/v) fructose and sucrose were 2.05 and 2.31g/L, respectively. The highest production of PS-7 was 2.82g/L when 2% (w/v) glucose was used as the carbon source. Galactose showed low production of PS-7 among the carbon sources tested. The effects of various carbon sources addition to whey based MSM medium showed that glucose could be the best candidate for the enhancement of PS-7 production using whey based MSM medium. To evaluate the effect of glucose addition to whey based media on PS-7 production, fermentations with whey and glucose mixture (whey 1, 2, 3%; whey 1% + glucose 1%, whey 1% + glucose 2% and glucose 2%, w/v) were carried out. Significant enhancement of PS-7 production with addition of 1% (w/v) and 2% (w/v) glucose in 1% (w/v) whey media was observed. The PS-7 concentration of 2% glucose added whey lactose based medium was higher than that of 1% glucose addition, however, the product yield $Y_{p/s}$ was higher in 1% glucose added whey lactose based MSM medium. Therefore, the optimal condition for the PS-7 production from the Azotobacter indicus var.myxogenes L3, was 1% glucose addition to 1% whey lactose MSM medium.

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Study on the Morphology of the PC/ABS Blend by High Shear Rate Processing (PC/ABS 블렌드의 고속전단성형에 따른 모폴로지 변화에 관한 연구)

  • Lee, Dong Uk;Yong, Da Kyoung;Lee, Han Ki;Choi, Seok Jin;Yoo, Jae Jung;Lee, Hyung Il;Kim, Seon-Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.382-387
    • /
    • 2014
  • The PC/ABS blends were manufactured with high shear rate processing. Changes of the blend morphology were analyzed according to the screw speed and processing time. To find optimal conditions of the high shear rate processing of the PC/ABS blend, blend morphology and size of the dispersed phase, ABS, were observed with a SEM. Also, tensile properties of the PC/ABS blends were measured to investigate the effect of the high shear rate process with the screw speed of 500 rpm to 3000 rpm for processing times of 10s to 40s. Especially, to observe the dispersed phase of the PC/ABS blend clearly, fracture surfaces of the PC/ABS blend were etched with chromic acid solution. As screw speed and processing time increase, dispersed phase size of the PC/ABS blend decreases and mechanical properties of the blend decrease as well. Especially, at screw speed over than 1000 rpm of high shear rate processing, mechanical properties of the PC/ABS blends decrease drastically due to the degradation of the blend during the high shear rate processing. Consequently, the optimal condition of screw speed of the high shear processing of the PC/ABS blend is set at 1000rpm, in this study. Under optimal condition, the PC/ABS blend has relatively high mechanical properties with the relatively stable micro-structure having nanometer scale dispersed phase.

An Evaluation on Health Conditions of Pyong-Chang River using the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index(QHEI) (생물보전지수(Index of Biological Integrity) 및 서식지 평가지수 (Qualitative Habitat Evaluation Index)를 이용한 평창강의 수환경 평가)

  • Jung, Seung-Hyun;Choi, Shin-Sok;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.153-165
    • /
    • 2001
  • We evaluated the health condition of Pyong-Chang river, the tributary of Han- River, using the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) during September 1999${\sim}$August 2000. The annual mean of IBI, which was estimated using eleven metrics, was 49 (range: $45{\sim}51$) and the mean of QHEI, which was estimated using seven parameters, was 88 (range: $76{\sim}94$) during the study. The river health, based on the IBI criteria of Karr (1981), ranged from "excellent" to "good" conditions, while based on the habitat criteria of Plafkin et al. (1989), it ranged from "pristine" (comparable to reference) to "supporting" conditions. Values of IBI showed slight differences between upstream and downstream sites and QHEI values varied weakly depending on characteristics of variables. Regression analyses showed that annual values of QHEI had no functional relations with stream order (p = 1.82; n = 8) but showed some decreases near slight point-sources. This result indicates that conditions of physical habitat did not change highly with increases of the stream order. According to analyses of feed guilds, relative abundance of insectivores, omnivores and carnivores was 85.1%, 3.5% 0.3%, respectively. Also, relative abundance of sensitive and tolerant species was 75% and 4.6%, respectively, while exotic and morphological anomalies were not found in the river. These outcomes indicate that health condition of fish, based on the trophic conditions of U.S. EPA (1993), was excellent in the river. Regression analyses of IBI values against the QHEI showed that the variation of habitat conditions accounted 57% for the variation of the Index of Biological Integrity (p<0.05; $R^2\;=\;0.57$; n = 7).Overall data of IBI and QHEI suggest that the river health in the present is in optimal conditions but may be degradated by acceleration of chemical inputs and physical-habitat disturbance.

  • PDF

Optimization of Compound K Production from Ginseng Extract by Enzymatic Bioconversion of Trichoderma reesei (Trichoderma reesei 유래 산업효소를 이용한 인삼추출물로부터 Compound K 생산 최적화)

  • Han, Gang;Lee, Nam-Keun;Lee, Yu-Ri;Jeong, Eun-Jeong;Jeong, Yong-Seob
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.570-578
    • /
    • 2012
  • Compound K(ginsenoside M1) is one of saponin metabolites and has many benefits for human health. This study was to investigate Compound K produced from ginseng crude saponin extract with commercial cellulolytic complex enzyme(cellulase, ${\beta}$-glucanase, and hemicellulase) obtained from Trichoderma reesei. The effect factors(temperature, pH, ginseng crude saponin extract and enzyme concentration, and reaction time) on production of Compound K from ginseng crude saponin extract were determined by one factor at a time method. The selected major factor variables were ginseng crude saponin extract of 2%(w/v), enzyme of 7%(v/v), reaction time of 48 hr. Based on the effect factors, response surface method was proceeded to optimize the enzymatic bioconversion conditions for the desirable Compound K production under the fixed condition of pH 5.0 and $50^{\circ}C$. The optimal reaction condition from RSM was ginseng crude saponin extract of 2.38%, enzyme of 6.06%, and reaction time of 64.04 hr. The expected concentration of Compound K produced from that reaction was 840.77 mg/100 g. Production of Compound K was 1,017.93 mg/100 g and 862.31 mg/100 g, by flask and bench-scale bioreactor($2.5{\ell}$) system, respectively.