DOI QR코드

DOI QR Code

Optimization of Compound K Production from Ginseng Extract by Enzymatic Bioconversion of Trichoderma reesei

Trichoderma reesei 유래 산업효소를 이용한 인삼추출물로부터 Compound K 생산 최적화

  • Han, Gang (Dept. of Food Science and Technology, Chonbuk National University) ;
  • Lee, Nam-Keun (Research Center for Industrial Development of Biofood Materials, Chonbuk National University) ;
  • Lee, Yu-Ri (Research Center for Industrial Development of Biofood Materials, Chonbuk National University) ;
  • Jeong, Eun-Jeong (Research Center for Industrial Development of Biofood Materials, Chonbuk National University) ;
  • Jeong, Yong-Seob (Dept. of Food Science and Technology, Chonbuk National University)
  • 한강 (전북대학교 식품공학과) ;
  • 이남근 (전북대학교 바이오식품소재개발 및 산업화연구센터) ;
  • 이유리 (전북대학교 바이오식품소재개발 및 산업화연구센터) ;
  • 정은정 (전북대학교 바이오식품소재개발 및 산업화연구센터) ;
  • 정용섭 (전북대학교 식품공학과)
  • Received : 2012.08.13
  • Accepted : 2012.08.29
  • Published : 2012.09.30

Abstract

Compound K(ginsenoside M1) is one of saponin metabolites and has many benefits for human health. This study was to investigate Compound K produced from ginseng crude saponin extract with commercial cellulolytic complex enzyme(cellulase, ${\beta}$-glucanase, and hemicellulase) obtained from Trichoderma reesei. The effect factors(temperature, pH, ginseng crude saponin extract and enzyme concentration, and reaction time) on production of Compound K from ginseng crude saponin extract were determined by one factor at a time method. The selected major factor variables were ginseng crude saponin extract of 2%(w/v), enzyme of 7%(v/v), reaction time of 48 hr. Based on the effect factors, response surface method was proceeded to optimize the enzymatic bioconversion conditions for the desirable Compound K production under the fixed condition of pH 5.0 and $50^{\circ}C$. The optimal reaction condition from RSM was ginseng crude saponin extract of 2.38%, enzyme of 6.06%, and reaction time of 64.04 hr. The expected concentration of Compound K produced from that reaction was 840.77 mg/100 g. Production of Compound K was 1,017.93 mg/100 g and 862.31 mg/100 g, by flask and bench-scale bioreactor($2.5{\ell}$) system, respectively.

인삼 조사포닌 추출물 내의 ginsenoside를 CK로 전환을 하기 위하여 T. reesei 유래 cellulolytic 복합 효소를 사용하였다. 온도, pH, 인삼 조사포닌 추출물 농도, 효소 농도와 반응시간별 T. reesei 효소의 인삼 조사포닌 추출물로부터 CK 전환에 대한 적정조건을 살펴본 결과, 온도는 $50^{\circ}C$에서 691.51 mg/100 g으로, pH는 조건별 큰 차이는 보이지 않았지만 pH 5.0일때 701.88 mg/100 g으로 가장 높은 함량을 나타내었다. 인삼 조사포닌 추출물과 효소 농도에 있어서는 각각 2%(w/v) 농도(678.82 mg/100 g)와 9%(v/v) 농도(691.51 mg/100 g)일 때 가장 높은 CK 농도를 보였다. 온도 $50^{\circ}C$, pH 5.0, 인삼 조사포닌 추출물 농도 2%(w/v)와 효소농도 9%(v/v)에서 반응시간에 따른 CK 생산을 분석한 결과, 반응 48시간까지 급격히 증가하다가 그 이후에는 반응속도가 현저하게 느려지는 경향을 보였지만, 반응 96시간에 784.97 mg/100 g으로 가장 높은 CK 농도를 나타내었다. 이러한 결과를 토대로 인삼 조사포닌 추출물의 농도 2%(w/v), 효소 농도 7%(v/v)와 반응 시간 48 hr를 CK 생산에 중요 요인변수로 선정하여 pH 5.0와 온도 $50^{\circ}C$에서 반응표면분석법 실험을 진행하였다. 그 결과, 인삼 조사포닌 추출물 농도 2.38%, 효소농도 6.07%와 효소반응 시간 64.04 hr를 최적조건으로 설정하였으며, CK 생산 예측 값은 840.77 mg/100 g이었다. 반응표면분석법으로 선정한 최적조건에서 플라스크와 생물반응기를 이용하여 효소반응을 수행한 결과 플라스크에서는 CK 생산 예측 값 보다 약 1.2배 높은 1,017.93 mg/100 g이 생성되었고, 생물반응기에서는 예측 값과 비슷한 862.31 mg/100 g의 CK가 생성되었다.

Keywords

References

  1. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. 2002. Metabolism of ginsenoside Rc by human intenstinal bacteria and its related antiallergic activity. Biol Pharm Bull 25:743-747 https://doi.org/10.1248/bpb.25.743
  2. Chahal DS. 1985. Solid-state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49:205-210
  3. Chang HK. 2003. Effect of processing methods on the saponin contents of Panax ginseng leaf-tea. Korean J Food & Nutr 16:46-53
  4. Choi JE, Nam KY, Li X, Kim BY, Cho HS, Hwang KB. 2010. Changes of chemical compositions and ginsenoside contents of different root part of ginsengs with processing method. Korean J Medicinal Crop Sci 18:118-125
  5. Kim AJ, Han MR, Joung KH, Cho JC, Park WJ, Han CW, Chang KH. 2008. Physiological evaluation of Korea ginseng, Deoduk and Doragi pickles. Korean J Food & Nutr 21:443-447
  6. Kim BH, Lee SY, Cho HJ, You SN, Kim YJ, Park YM, Lee JK, Baik MY, Park CS, Ahn SC. 2006. Biotransformation of Korean Panax ginseng by pectinex. Chem Pharm Bull 29:2472-2478 https://doi.org/10.1248/bpb.29.2472
  7. Ko SR, Suzuki Y, Suzuki K, Choi KJ, Cho BG. 2007. Marked production of ginsenosides Rd, F2, Rg3, and Compound K by enzymatic method. Chem Pharm Bull (Tokoy) 55:1522-1527 https://doi.org/10.1248/cpb.55.1522
  8. Kwon OS, Chung YB. 2004. Solubilization of IH-901, a novel intestinal metabolite of ginseng saponin, in aqueous solution. J Kor Pharm Sci 34:358-391 https://doi.org/10.4333/KPS.2004.34.5.385
  9. Park CS, Yoo MH, Noh KH, Oh DK. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9-19 https://doi.org/10.1007/s00253-010-2567-6
  10. Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC. 2010. Bioconversion of ginsenoside Rd into Compound K by Lactobacillus pentosus DC101 isolated from Kimchi. J Ginseng Res 34:288-295 https://doi.org/10.5142/jgr.2010.34.4.288
  11. Quan LH, Liang Z, Kim HB, Kim SH, Kim SY, Noh YD, Yang DC. 2008. Conversion of ginsenoside Rd to Compound K by crude enzymes extracted from Lactobacillus brevis LH8. J Ginseng Res 32:226-231 https://doi.org/10.5142/JGR.2008.32.3.226
  12. Saiki I. 2003. Anti-metastatic effect of ginseng saponins and its molecular mechanism. J Ginseng Res 27:151-157 https://doi.org/10.5142/JGR.2003.27.4.151
  13. Seidl V, Seibel C, Kubicek CP, Schmoll M. 2009. Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci USA 106:13909-13914 https://doi.org/10.1073/pnas.0904936106
  14. Vensisetty RK, Ciddi V. 2003. Application of microbial biotransformation for the new drug discovery using natural drug as substrates. Curr Pharm Biotechnol 4:153-162 https://doi.org/10.2174/1389201033489847
  15. Yoo MH, Yeom SJ, Park CS, Lee KW, Oh DK. 2011. Production of aglycon protopanaxadiol via Compound K by a thermostable $\beta$-glycosidase from Pyrococcus furiosus. Appl Microbiol Biotechnol 89:1019-1028 https://doi.org/10.1007/s00253-010-2960-1
  16. Zhu YL, Huang W, Ni JR, Liu W, Li H. 2010. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation. Appl Microbiol Biotechnol 85:1409-1416 https://doi.org/10.1007/s00253-009-2200-8