Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC

고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구

  • Hong, Suck Joo (Department of Mechanical Engineering, Chosun University) ;
  • Lim, Mun Sup (BK21 Team for Hydrogen Production, Department of Environmental Engineering, Chosun University) ;
  • Chun, Young Nam (BK21 Team for Hydrogen Production, Department of Environmental Engineering, Chosun University)
  • 홍석주 (조선대학교 기계공학과) ;
  • 임문섭 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀) ;
  • 전영남 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀)
  • Received : 2007.07.22
  • Accepted : 2007.08.29
  • Published : 2007.12.31

Abstract

Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

고분자 전해질 연료전지 운전에 필요한 수소 공급 장치로서 플라즈마 개질 방법을 이용한 개질기와 일산화탄소 산화반응을 위한 전이 반응기를 설계 및 제작하였다. GlidArc 방전을 이용한 저온플라즈마 개질기는 Ni 촉매를 동시에 사용하여 $CH_4$ 개질함으로서 $H_2$ 선택도를 증대하였다. 개질기의 변수별 연구로서 촉매 온도, 가스 조성비, 전체 가스유량, 전압변화 그리고 개질 특성 및 최적 수소 생산조건을 연구하였으며, 전이반응기의 변수별 연구로서 선택적 산화반응기(PrOx)에 주입되는 공기량, 전이 반응기에 주입되는 수증기량 그리고 온도에 대하여 연구하였다. 플라즈마 개질기에서 최대 수소 생산 조건은 $O_2/C$ 비가 0.64, 가스유량은 14.2 l/min, 촉매 반응기 온도 $672^{\circ}C$ 그리고 유입전력이 1.1 kJ/L일 때 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때의 $CH_4$ 전환율, $H_2$ 수율 그리고 개질기 에너지 밀도는 각각 88.7%, 54%, 35.2%를 나타냈다. 전이 반응기에서 모사된 개질 가스로부터 최대 CO 전환율을 보이는 조건은 2단으로 구성된 PrOx에 주입되는 $O_2/C$ 비가 0.3, HTS에서 주입되는 수증기 주입량 비가 2.8 그리고 HTS, LTS, PrOx I, PrOx II 반응기 온도가 475, 314, 260, $235^{\circ}C$ 일때 가장 높은 CO 전환율을 나타냈다. 플라즈마를 이용한 반응기는 예열 시간은 30분이 소요되었으며, 전이 반응기에서 나오는 최종 개질 가스의 조성은 $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% 그리고 $CH_4$ 4%로 나타냈다.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. Iulian, R. and Jean-Marie, C., 'On a Possible Mechanism of the Methane Steam Reforming in a Gliding Arc Reactor,' Chemical Engineering Journal, 91(1), 23-31(2003) https://doi.org/10.1016/S1385-8947(02)00043-8
  2. Yang, J. I. and Kim, J. N., 'Production of Hydrogen in the Steam-Methane Reforming Reaction Using Sorption Enhanced Reaction Process,' Korean Chem. Eng. Ros., 41(4), 439-444(2003)
  3. Shigeru, F., Hajime, K. and Gurusamy, A., 'Roles of $CO_{2}$ and $H_{2}O$ as Oxidants in the Plasma Reforming of Aliphatic Hydrocarbons,' Catalysis Today, 115(1-4), 211-216(2006) https://doi.org/10.1016/j.cattod.2006.02.032
  4. Nishimoto, H., Nakagawa, K., Ikenaga, N., Nishitani-Gamo, M., Ando, T. and Suzuki, T., 'Partial Oxidation of Methane to Synthesis Gas over Oxidized Diamond Catalysts,' Applied Catalysis A: General, 264(1), 65-72(2004) https://doi.org/10.1016/j.apcata.2003.12.029
  5. Lee, D. H., Lim, K. T., Cha, M. S. and Song, Y. H., 'Optimization Scheme of a Rotating Gliding arc Reactor for Partial Oxidation of Methane,' Pro. Com. Inst., 31(2), 3343-3351(2007) https://doi.org/10.1016/j.proci.2006.07.230
  6. Rostrup-Nielsen, D. J. R., 'Coking on Ni Catalysts for Steam Reforming of Hydrocarbons,' J. Catal., 33(2), 184-201(1974) https://doi.org/10.1016/0021-9517(74)90263-2
  7. Pasquale, C. and Fortunato, M., 'Hydrogen Production by Catalytic Partial Oxidation of Methane and Propane on Ni and Pt Catalysts,' Int. J. Hyd. Ene., 32(1), 55-66 (2007) https://doi.org/10.1016/j.ijhydene.2006.06.032
  8. Zhigang, L., Renxian, Z. and Xiaoming, Z., 'Comparative Study of Different Methods of Preparing CuO-$CeO_{2}$ Catalysts for Preferential Oxidation of CO in Excess Hydrogen,' J. Molecular Catalysis A: Chemical, 267(1-2), 137-142(2007) https://doi.org/10.1016/j.molcata.2006.11.006
  9. Kim, D. K., Shin, C. S. and Shin, C. H., 'Low Temperature CO Oxidation over $Co_{3}O_{4}/{\gamma}-Al_{2}O_{3}$ Catalyst,' Korean Chem. Eng. Res., 42(3), 371-374(2004)