• Title/Summary/Keyword: 최적변수

Search Result 3,049, Processing Time 0.041 seconds

Structure Optimization and 3D Printing Manufacture Technology of Pull Cord Switch Components Applied to Power Plant Coal Yard (발전소 저탄장에 적용되는 풀코드스위치 부품의 구조최적화 3D 프린팅 제작기술 개발)

  • Lee, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.319-330
    • /
    • 2016
  • Recently, 3D printing technology has been applied to make a concept model and working mockup of an industrial application. On the other hand, this technology has limited applications in industrial products due to the materials and reliability of the 3D printed product. In this study, the components of a full cord switch module are proposed as a case of a 3D printed component that can be used as a substitute for a short period. These are hub-driven and lever lockup components that have the structural characteristics of breaking down frequently in the emergency operating status. To ensure the structural strength for a substitute period, research of structure optimization was performed because 3D printing technology has a limitation in the materials used. After optimizing the structure variables of the hub-driven component, reasonable results can be drawn in that the safety factors of the left and right switching mode are 1.243 (${\Delta}153.67%$) and 3.156 (${\Delta}404.96%$). The lever lockup component has a structural weak point that can break down easily on the lockup-part because of a cantilever shape and bending moment. The rib structure was applied to decrease the deflection. In addition, optimization of the structural variables was performed, showing a safety factor of 7.52(${\Delta}26%$).

Process Capability Optimization of Ball Bonding Using Response Surface Analysis in Light Emitting Diode(LED) Wire Bonding (반응 표면 분석법을 이용한 Light Emitting Diode(LED) wire bonding 용 Ball Bonding 공정 최적화에 관한 연구)

  • Kim, Byung-Chan;Ha, Seok-Jae;Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • In light emitting diode (LED) chip packaging, wire bonding is an important process that connects the LED chip on the lead frame pad with the Au wire and enables electrical operation for the next process. The wire bonding process is divided by two types: thermo compression bonding and ultrasonic bonding. Generally, the wire bonding process consists of three steps: 1st ball bonding that bonds the shape of the ball on the LED chip electrode, looping process that hangs the wire toward another connecting part with a loop shape, and 2nd stitch bonding that forms and bonds to another electrode. This study analyzed the factors affecting the LED die bonding processes to optimize the process capability that bonds a small Zener diode chip on the PLCC (plastic-leaded chip-carrier) LED package frame, and then applied response surface analysis. The design of experiment (DOE) was established considering the five factors, three levels, and four responses by analyzing the factors. As a result, the optimal conditions that meet all the response targets can be derived.

Extraction Yield of Extruded Ginseng and Granulation of Its Extracts by Cold Extrusion-Spheronization (압출성형 수삼의 추출수율과 추출물의 저온압출 구형과립화)

  • ;J.P. Remon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.899-904
    • /
    • 2004
  • The objectives of the experiment were to examine the effects of extrusion process variables on the yield of extruded ginseng extract and to determine the effect of ratio of extruded ginseng extract and microcrystalline cellulose on characteristics of spheronized granules by cold extrusion-spheronization process. Extrusion process variables observed were feed moisture (15, 22, 29%), die temperature (90 110 13$0^{\circ}C$) and screw speed (150 200, 250 rpm). The results showed that moisture content of dried ginseng significantly affected extraction yield (P<0.05). The less moisture content of the feed resulted in the higher yield of the extract. Moisture content of 15%, screw speed of 250 rpm and die temperature of 13$0^{\circ}C$ gave the highest yield of ginseng extract. Mean extraction yield of extruded ginseng using hot water extraction was greatly improved by extrusion process The extract yield of extruded ginseng was 43.5% which was higher than that of red ginseng (38.3%) and white ginseng (29.0%) produced by traditional process. It was possible to make from the mixture of microcrystalline cellulose (200 g) mixed with different concentration of 200 mL solution (0, 5, 20, 30 40 50 60% of ginseng extract with 59.2% dry solid) by using cold extrusion spheronization. When the concentration of ginseng extract Increased, the granulation yield was improved but friability and compression index were reduced. Ginseng extract such as saponin was completely released from spheronized granules in distilled water within 10 min. It can be concluded that spheroniged granule with ginseng extract could be packed in gelatin capsule since granules Possessed proper physical properties and quick release of saponin.

A study on the Synthesis of Nickel Hydroxide by Ammonium Sulfate from Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지로부터 황산암모늄을 이용한 수산화니켈 제조 방안 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jeong, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.51-59
    • /
    • 2019
  • This study focused on the synthesis of the nickel hydroxide using ammonium sulfate in leaching solution from waste nickel-cadmium batteries. The effect of pH, temperature and the input amount of ammonium sulfate in leaching solution was investigated. The ammonium nickel sulfate with high purity was obtained in acidic leaching solution and the solution temperature of $60^{\circ}C$. The suitable molar ratio of the input amount of ammonium sulfate to nickel in solution is 2:1. The impurity about 1.4 at.% of Cd was included in the nickel hydroxide precipitates when ammonium nickel sulfate was used. At the process using sodium sulfide which precipitates the cadmium in solution, nickel and iron compounds were precipitated together.

A Study on the Sensory Tests Correlated Objective Measurements for the Gloss and Gloss-lasting Capability of Lipstick (립스틱의 광택 및 광택 지속성에 대한 객관적인 측정법에 관한 연구)

  • Kim, Kyung-Nam;Kim, Yoon-Jeong;Lee, Hwa-Young;Kim, Eun-Jeong;Cheon, Ji-Min;Kang, Hak-Hee;Lee, Ok-Sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.59-64
    • /
    • 2005
  • In case of lipsticks, observer's subjective sensitivity has been the main index to estimate gloss and gloss-lasting capability. The glossmeter has been applied to measure the gloss of make-up cosmetics like nail enamel, however is not effective for lipstick because of uneven sampling. Also gloss-lasting capability couldn't have been measured. In this study, we optimized measurement methods of gloss and gloss-lasting capability of lipsticks, which are highly correlated to subjective sensory tests. We set up the standard methods of gloss measurement by changing application conditions, for example, materials, sizes and application number of times and so on. And we introduced optimizing measurement system, in which shaking speed and temperature were controlled to measure gloss-lasting capability. Applying our methods, the gloss values were very close to the results of sensory tests, and we could express the gloss and gloss-lasting capability of lipsticks numerically Repeatability and reproducibility of our methods were certified by six-sigma statistical tool.

Extraction of Total Flavonoids from Lemongrass Using Microwave Energy: Optimization Using CCD-RSM (마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sick;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • In this study, we measured total flavonoids after extracting the total flavonoids from lemongrass which is known to have a high content of antioxidant ingredients when using microwave energy. Also, optimal extraction conditions of active ingredients using central composite design-response surface methodology (CCD-RSM) were presented. Both ultrapure water and alcohol were used as extraction solvents and the volume ratio of ethanol/ultrapure water, microwave irradiation time, and microwave irradiation power were set as independence variables. And the extraction yield and total flavonoids were measured. The optimal extraction conditions using CCD-RSM were the volume ratio of ethanol/ultrapure water = 56.3 vol.%, the microwave irradiation time = 6.1 min, and the microwave irradiation power = 574.6 W. We could also obtain expected results of yield = 17.2 wt.% and total flavonoids = 44.7 ㎍ QE/mL dw under the optimum conditions. The comprehensive satisfaction degree of this formula was 0.8562. The P-value was calculated for the yield of 0.037 and the total flavonoids content of 0.002. The average error from actual experiments established for the verification of conclusions was lower than 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimization of extraction process.

Saccharification Characteristics of Extruded Corn Starch at Different Process Parameters (압출성형 공정변수에 따른 옥수수전분 팽화물의 당화특성)

  • Lee, Kyu-Chul;Kim, Yeon-Soo;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • The aim of this study was to determine the effects of different extrusion conditions on the saccharification characteristics( initial reaction velocity, reaction rate constant, yield) of extruded corn starch. Extruded corn starch-water slurries were mixed with alpha-amylase for the enzymatic saccharification. The saccharification yield of extruded corn starch was high at lower feed moisture content and higher barrel temperature. The solubility of extrudates increased with increase in the SME input which increased with increase in the feed moisture content. Starch hydrolysates having DE 63.8 was obtained after 2 hr reaction. The initial reaction velocity of the extrudate slurry with alpha-amylase was higher with decrease in the feed moisture content. The initial reaction velocity of extruded corn starch was the highest ($2.26{\times}10^{-3}mmol/mL{\cdot}min$) at 25% feed moisture content and $120^{\circ}C$ barrel temperature, 250 rpm screw speed. The pregelatinized starch was $1.83{\times}10^{-3}mmol/mL{\cdot}min$ as a control. Reaction rate constant was a similar trend to initial reaction velocity.

Ultrasound-assisted Extraction of Total Flavonoids from Wheat Sprout: Optimization Using Central Composite Design Method (밀싹으로부터 플라보노이드성분의 초음파 추출 : 중심합성계획모델을 이용한 최적화)

  • Lee, Seung Bum;Wang, Xiaozheng;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.663-669
    • /
    • 2018
  • The process of extracting active ingredients from wheat sprout using ultrasound assisted method was optimized with a central composite design model. The response value of the central composite design model established the extraction yield and the total flavonoids content, main effects and interactive effects were analyzed depending on independent variables such as the extraction time, volume ratio of ethanol to ultrapure water, and ultrasonic irradiation power. The volume ratio of ethanol to ultrapure water and ultrasonic irradiation power were relatively large for the extraction yield and the extraction time was most significantly affected the total flavonoids, Considering both the extraction yield and total flavonoids content, the optimal extraction conditions were as follows: the extraction time of 17.00 min, volume ratio of ethanol to ultrapure water of 50.25 vol%, ultrasonic irradiation power of 551.70 W. In this case, the extraction yield and total flavonoids content were 28.43 wt% and $29.99{\mu}g\;QE/mL\;dw$, respectively. The actual experimental extraction yield and total flavonoids content under this condition were 8.73 wt% and $29.65{\mu}g\;QE/mL\;dw$, respectively with respective error rates of 1.05 and 1.13%.

Software Package for Pipe Hydraulics Calculation for Single and Two Phase Flow (배관 유동의 주요 변수계산을 위한 소프트웨어 시스템의 개발)

  • Chang, Jaehun;Lee, Gunhee;Jung, Minyoung;Baek, Heumkyung;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.628-636
    • /
    • 2019
  • In various industrial processes, piping serves as a link between unit processes and is an essential installation for internal flow. Therefore, the optimum design of the piping system is very important in terms of safety and cost, which requires the estimation of the pressure drop, flow rate, pipe size, etc. in the piping system. In this study, we developed a software that determines pressure drop, flow rate, and pipe size when any two of these design variables are known. We categorized the flows into single phase, homogeneous two phase, and separated two phase flows, and applied suitable calculation models accordingly. We also constructed a system library for the calculation of the pipe material, relative roughness, fluid property, and friction coefficients to minimize user input. We further created a costing library according to the piping material for the calculation of the investment cost of the pipe per unit length. We implemented all these functions in an integrated environment using a graphical user interface for user convenience, and C # programming language. Finally, we verified the accuracy of the software using literature data and examples from an industrial process with obtained deviations of 1% and 8.8% for the single phase and two-phase models.

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading (지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가)

  • Han, Insuk;Ahn, Jae-Kwang;Park, Duhee;Kwon, Osoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.