DOI QR코드

DOI QR Code

Extraction of Total Flavonoids from Lemongrass Using Microwave Energy: Optimization Using CCD-RSM

마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화

  • Received : 2021.01.14
  • Accepted : 2021.03.08
  • Published : 2021.04.10

Abstract

In this study, we measured total flavonoids after extracting the total flavonoids from lemongrass which is known to have a high content of antioxidant ingredients when using microwave energy. Also, optimal extraction conditions of active ingredients using central composite design-response surface methodology (CCD-RSM) were presented. Both ultrapure water and alcohol were used as extraction solvents and the volume ratio of ethanol/ultrapure water, microwave irradiation time, and microwave irradiation power were set as independence variables. And the extraction yield and total flavonoids were measured. The optimal extraction conditions using CCD-RSM were the volume ratio of ethanol/ultrapure water = 56.3 vol.%, the microwave irradiation time = 6.1 min, and the microwave irradiation power = 574.6 W. We could also obtain expected results of yield = 17.2 wt.% and total flavonoids = 44.7 ㎍ QE/mL dw under the optimum conditions. The comprehensive satisfaction degree of this formula was 0.8562. The P-value was calculated for the yield of 0.037 and the total flavonoids content of 0.002. The average error from actual experiments established for the verification of conclusions was lower than 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimization of extraction process.

본 연구에서는 마이크로웨이브 에너지를 이용하여 항산화성분을 다량 함유하고 있는 레몬그라스로부터 플라보노이드 성분을 추출하였다. 또한 반응표면분석법 중 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 추출공정의 독립변수로는 주정/초순수의 부피비, 마이크로웨이브 조사시간, 마이크로웨이브 조사세기를 설정하였고, 반응치는 추출수율과 플라보노이드 함량을 확인하였다. CCD-RSM 분석 결과 최적조건인 주정/초순수 부피비(56.3 vol.%), 마이크로웨이브 조사시간(6.1 min), 마이크로웨이브 조사세기(574.6 W)에서 추출수율(17.2%)와 플라보노이드 함량(44.7 ㎍ QE/mL dw)의 결과를 얻는 것으로 나타났다. 이때 종합만족도는 D = 0.8562이고, P-value는 추출수율(0.037)과 플라보노이드 함량(0.002)으로 나타났다. 이 조건에서의 실제실험 결과 오차율은 5.0% 이하로 나타나 높은 유의수준의 결과를 얻을 수 있었다.

Keywords

References

  1. M. J. Akhtar, M. Ahamed, H. A. Alhadlaq, and A. Alshamsan, Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders, Biochim. Biophys. Acta Biomembr., 1861(4) 802-813 (2017). https://doi.org/10.1016/j.bbagen.2017.01.018
  2. M. Y. Lee, M. S. Yoo, Y. J. Whang, Y. J. Jin, M. H. Hong, and Y. H. Pyo, Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels, Korean J. Food Sci. Technol., 44(5), 540-544 (2012). https://doi.org/10.9721/KJFST.2012.44.5.540
  3. N. C. Cook and S, Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/S0955-2863(95)00168-9
  4. Y. Christen, Oxidative stress and Alzheimer disease, Am. J. Clin. Nutr., 71, 621-629 (2000). https://doi.org/10.1093/ajcn/71.2.621s
  5. S. B. Lee, X. Wang, and I. K. Hong, Ultrasound-assisted extraction of total flavonoids from wheat sprout: Optimization using central composite design method, Appl. Chem. Eng., 29(6), 663-669 (2018). https://doi.org/10.14478/ACE.2018.1067
  6. I. K. Hong, B. R. Park, G. S. Jeon, and S. B. Lee, Extraction of flavonoid components from persimmon leaf, thistle and new green, Appl. Chem. Eng., 27(3), 276-279 (2016). https://doi.org/10.14478/ace.2016.1027
  7. V. C. Georgea, G. Dellaireb, and V. Rupasinghe, Plant flavonoids in cancer chemoprevention: Role in genome stability, Nutr. Biochem., 45, 1-14 (2017). https://doi.org/10.1016/j.jnutbio.2016.11.007
  8. A. H. Clifford and S. L. Cuppett, Anthocyanins-nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063-1072 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
  9. N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/S0955-2863(95)00168-9
  10. H. L. Jiang, J. L. Yang, and Y. P. Shi, Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology, Ultrason. Sonochem., 34, 325-331 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.003
  11. F. Dranca and M. Oroian, Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel, Ultrason. Sonochem., 31, 637-646 (2016). https://doi.org/10.1016/j.ultsonch.2015.11.008
  12. K. Ameer, S. W. Bae, Y. Jo, H. G. Lee, A. Ameer, and J. H. Kwon, Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling, Food Chem., 229, 198-207 (2017). https://doi.org/10.1016/j.foodchem.2017.01.121
  13. S. Beck and J. Stengel, Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L., Phytochem. Lett., 130, 201-206 (2016). https://doi.org/10.1016/j.phytochem.2016.05.005
  14. R. F. Yanga, L. L. Genga, H. Q. Lub, and X. D. Fanc, Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni, Ultrason. Sonochem., 34, 571-579 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.037
  15. A. Das, A. K. Golder, and C. Das, Enhanced extraction of rebaudioside-A: Experimental, response surface optimization and prediction using artificial neural network, Ind. Crops Prod., 65, 415-421 (2015). https://doi.org/10.1016/j.indcrop.2014.11.006