DOI QR코드

DOI QR Code

Crystallinity Changes Heat Treatment of Coal Tar Pitch and Phenol Resin used as a Binder for Bulk Graphite Manufacturing

벌크흑연 제조를 위한 결합재로 이용되는 콜타르 핏치 및 페놀수지의 열처리에 의한 결정성 변화

  • Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Lee, Hyun-yong (Carbolab co., Ltd.) ;
  • Lee, Sang-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 이상민 (금오공과대학교 신소재연구소) ;
  • 이현용 ((주)카보랩) ;
  • 이상혜 (금오공과대학교 신소재공학부) ;
  • 노재승 (금오공과대학교 신소재공학부)
  • Received : 2021.01.06
  • Accepted : 2021.03.12
  • Published : 2021.04.10

Abstract

The coal tar pitch and phenol resins are used as binders in artificial graphite manufacture, but there are differences in the initial carbon compound structure. According to the carbonization temperature, it can be expected that there are differences in thermal decomposition behavior, microstructure, and crystallinity change. These properties of the coal tar pitch and phenol resins were compared to each other. As the carbonization temperature of coal tar pitch and phenol resin increases, crystallinity tends to increase. The coal tar pitch went through the carbonization process through the liquid, and it was confirmed that the crystallinity changed rapidly in the temperature range of 500 and 600 ℃, where the microstructure changed quickly. These results confirmed the close correlation between microstructure and crystallinity.

인조흑연 제조용 바인더로 주로 이용되는 콜타르 핏치와 페놀 레진은 soft carbon 및 hard carbon의 초기 탄소화합물 구조에 차이가 있다. 따라서 탄화 온도에 따른 열분해 거동, 미세조직, 결정성의 변화 과정도 다를 것으로 예상할 수 있다. 본 연구에서는 콜타르 핏치 및 페놀 레진의 열분해 거동, 미세조직, 결정성 변화에 관하여 비교 분석하였다. 콜타르 핏치는 액상을 경유한 탄화 과정을 거치며, 탄화 온도가 증가함에 따라 미세조직이 점차 변화되는 것을 확인할 수 있었다. 탄화 온도가 증가함에 따라 콜타르 핏치 및 페놀 레진 모두 결정성은 증가하는 경향을 나타냈지만, 콜타르 핏치는 미세조직이 급변하는 500 및 600 ℃ 구간에서 결정성도 급격히 변화는 것을 확인할 수 있었다. 또한 미세조직과 결정성은 서로 밀접한 연관성이 있었다.

Keywords

References

  1. Y. D. Park, Production technology of artificial graphite electrodes for are furnace, Polym. Sci. Technol., 8, 155-162 (1997).
  2. J. M. Ripalda, E. Román, N. Diaz, L. Galan, I. Montero, G. Comelli, A. Baraldi, S. Lizzit, A. Goldoni, and G. Paolucci, Correlation of x-ray absorption and x-ray photoemission spectroscopies in amorphous carbon nitride, Phys. Rev. B., 60, R3705-3708 (1999). https://doi.org/10.1103/PhysRevB.60.R3705
  3. S. S. Kim, Recent developments in anode materials for Li secondary batteries, J. Korean Electrochem. Soc., 11, 211-222 (2008). https://doi.org/10.5229/JKES.2008.11.3.211
  4. Y. Yamashita, K. Ouchi, A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13C, Carbon, 19, 89-94 (1981). https://doi.org/10.1016/0008-6223(81)90112-3
  5. X. Bourrat, E. J. Roche, and J. G. Lavin, Structure of mesophase pitch fibers, Carbon, 28, 435-446 (1990). https://doi.org/10.1016/0008-6223(90)90017-S
  6. I. Mochida, H. Toshima, Y. Korai, and T. Hino, Oxygen distribution in the mesophase pitch fibre after oxidative stabilization, J. Mater. Sci., 24, 389-394 (1989). https://doi.org/10.1007/BF01107416
  7. S. Otani, On the carbon fiber from the molten pyrolysis products, Carbon, 3, 31-34 (1965). https://doi.org/10.1016/0008-6223(65)90024-2
  8. K. J. Huttinger and J. P. Wang, Kinetics of mesophase formation in a stirred tank reactor and properties of the products - II. Discontinuous reactor, Carbon, 30, 1-8 (1992). https://doi.org/10.1016/0008-6223(92)90099-I
  9. K. Azami, S. Yamamoto, and Y. Sanada, Kinetics of mesophase formation of petroleum pitch, Carbon, 32, 947-951 (1994). https://doi.org/10.1016/0008-6223(94)90054-X
  10. J. H. Chae, K. J. Kim, K. Y. Cho, and J. Y. Choi, The carbonization behaviors of coal tar pitch for mechanical seal, Carbon Lett., 2, 182-191 (2001).
  11. J. S. Roh, A structural study of the oxidized high modulus pitch based carbon fibers by oxidation in carbon dioxide, Carbon Lett., 5, 27-33 (2004).
  12. D. S. Kang, S. M. Lee, S. H. Lee, and J. S. Roh, X-ray diffraction analysis of the crystallinity of phenolic resin-derived carbon as a function of the heating rate during the carbonization process, Carbon Lett., 27, 108-111 (2018). https://doi.org/10.5714/CL.2018.27.108
  13. S. H. Lee, D. S. Kang, S. M. Lee, and J. S. Roh, X-ray diffraction analysis of the effect of ball milling time on crystallinity of milled polyacrylonitrile-based carbon fiber, Carbon Lett., 26, 11-17 (2018). https://doi.org/10.5714/CL.2018.26.011
  14. W. O. Souza, K. Garcia, C. F. de Avila Dollinger, and L. C. Pardini, Electrical behavior of carbon fiber/phenolic composite during pyrolysis, Mater. Res., 18, 1209-1216 (2015). https://doi.org/10.1590/1516-1439.000515
  15. A. Dang, H. Li, T. Li, T. Zhao, C. Xiong, Q. Zhuang, Y. Shang, X. Chen, and X. Ji, Preparation and pyrolysis behavior of modified coal tar pitch as C/C composites matrix precursor, J. Anal. Appl. Pyrolysis, 119, 18-23 (2016). https://doi.org/10.1016/j.jaap.2016.04.002
  16. J. Y. Yang, S. H. Park, S. J. Park, and M. K. Seo, Preparation and characteristic of carbon/carbon composites with coal-tar and petroleum binder pitches, Appl. Chem. Eng., 26, 406-412 (2015). https://doi.org/10.14478/ace.2015.1035
  17. A. Oberlin, Carbonization and graphitization, Carbon, 22, 521-541 (1984). https://doi.org/10.1016/0008-6223(84)90086-1