DOI QR코드

DOI QR Code

Ultrasound-assisted Extraction of Total Flavonoids from Wheat Sprout: Optimization Using Central Composite Design Method

밀싹으로부터 플라보노이드성분의 초음파 추출 : 중심합성계획모델을 이용한 최적화

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Wang, Xiaozheng (Department of Chemical Engineering, Dankook University) ;
  • Hong, In Kwon (Department of Chemical Engineering, Dankook University)
  • Received : 2018.07.02
  • Accepted : 2018.08.03
  • Published : 2018.12.10

Abstract

The process of extracting active ingredients from wheat sprout using ultrasound assisted method was optimized with a central composite design model. The response value of the central composite design model established the extraction yield and the total flavonoids content, main effects and interactive effects were analyzed depending on independent variables such as the extraction time, volume ratio of ethanol to ultrapure water, and ultrasonic irradiation power. The volume ratio of ethanol to ultrapure water and ultrasonic irradiation power were relatively large for the extraction yield and the extraction time was most significantly affected the total flavonoids, Considering both the extraction yield and total flavonoids content, the optimal extraction conditions were as follows: the extraction time of 17.00 min, volume ratio of ethanol to ultrapure water of 50.25 vol%, ultrasonic irradiation power of 551.70 W. In this case, the extraction yield and total flavonoids content were 28.43 wt% and $29.99{\mu}g\;QE/mL\;dw$, respectively. The actual experimental extraction yield and total flavonoids content under this condition were 8.73 wt% and $29.65{\mu}g\;QE/mL\;dw$, respectively with respective error rates of 1.05 and 1.13%.

초음파 추출공정을 이용하여 밀싹으로부터 유효성분을 추출하고, 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 중심합성계획모델의 반응치로는 추출수율과 플라보노이드성분 함량을 설정하고, 독립변수인 추출시간, 주정/초순수 부피비, 초음파 조사세기에 따른 주효과도와 교호효과도를 해석하였다. 추출수율의 경우 주정/초순수의 부피비와 초음파 조사세기가 상대적으로 큰 영향을 미쳤으며, 플라보노이드성분 함량의 경우에는 추출시간의 영향이 가장 크게 나타났다. 추출수율과 플라보노이드성분 함량을 모두 고려한 결과 최적조건은 추출시간(17.00 min), 주정/초순수의 부피비(50.25 vol%), 초음파 조사세기(551.70 W)이며, 이때 예측 추출수율은 28.43 wt%, 예측 플라보노이드성분 함량은 $29.99{\mu}g\;QE/mL\;dw$을 얻을 수 있었다. 실험을 통해 유효성분 추출수율(28.73 wt%), 플라보노이드성분 함량 ($29.65{\mu}g\;QE/mL\;dw$)의 실험값을 얻을 수 있었으며, 이를 예측값과 비교했을 때 오차율은 각각 1.05, 1.13%이다.

Keywords

GOOOB2_2018_v29n6_663_f0001.png 이미지

Figure 1. Extraction yield and total flavonoids of active ingredient from the wheat sprout using ultrasound-assisted extraction.

GOOOB2_2018_v29n6_663_f0002.png 이미지

Figure 2. Response surface for yield of the wheat sprout at constant values as a function of time, ethanol concentration and power in UASE.

GOOOB2_2018_v29n6_663_f0003.png 이미지

Figure 3. Perturbation plot for the effect of variables on extraction yield.

GOOOB2_2018_v29n6_663_f0004.png 이미지

Figure 4. Response surface for total flavonoids of the wheat sprout at constant values as a function of time, ethanol concentration and power in UASE.

GOOOB2_2018_v29n6_663_f0005.png 이미지

Figure 5. Perturbation plot for the effect of variables on total flavonoids.

GOOOB2_2018_v29n6_663_f0006.png 이미지

Figure 6. Scatter plot of extraction yield and total flavonoids content from wheat sprout in UASE process.

GOOOB2_2018_v29n6_663_f0007.png 이미지

Figure 7. Optimization graph of response surface for yield and total flavonoids of the wheat sprout in UASE.

Table 1. Basic Experiment Setup of Ultrasound-assisted Extraction

GOOOB2_2018_v29n6_663_t0001.png 이미지

References

  1. N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/0955-2863(95)00168-9
  2. A. H. Clifford and S. L. Cuppett, Anthocyanins-nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063-1072 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
  3. B. Tudek, B. Peryt, J. Miloszewska, T. Szymczyk, M. Przybyszewska, and P. Janik, The effect of wheat sprout extract on benzo(a)pyrene and 7,2-dimethylbenz(a) anthracene activity, Neoplasma, 35(5), 515-523 (1998).
  4. O. S. Aydos, A. Avcl, T. Ozkan, A. Karadag, E. Gurleyik, B. Altinok, and A. Sunguroglu, Antiproliferative, apoptotic and antioxidant activities of wheat grass (Triticum aestivum L.) extract on CML (k562) cell line, Turk. J. Med. Sci., 41(4), 657-663 (2011).
  5. G. Falcioni, D. Fedeli, L. Tiano, I. Calzuola, L. Mancinelli, V. Marsili, and G. Gianfranceschi, Antioxidant activity of wheat sprouts extract in vitro: Inhibition of DNA oxidative damage, J. Food Sci., 67(8), 2918-2922 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb08838.x
  6. S. Yavari, A. Malakahmad, N. B. Sapari, and S. Yavari, Sorption properties optimization of agricultural wastes-derived biochars using response surface methodology, Process Saf. Environ. Prot., 109, 509-519 (2017). https://doi.org/10.1016/j.psep.2017.05.002
  7. A. A. D'Archivio and M. A. Maggi, Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids, Food Chem., 219, 414-418 (2017). https://doi.org/10.1016/j.foodchem.2016.09.167
  8. G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, J. Ind. Eng. Chem., 313, 993-1003 (2017).
  9. H. S. Jeong, H. Joo, and J.-H. Lee, Antioxidant activity of dietary fibers from tubers and stalks of sweet potato and their anti-cancer effect in human colon cancer, Appl. Chem. Eng., 24(5), 525-529 (2013).
  10. N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/0955-2863(95)00168-9
  11. S. Beck and J. Stengel, Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L, Phytochemistry, 130, 201-206 (2016). https://doi.org/10.1016/j.phytochem.2016.05.005
  12. T. Belwal, P. Dhyani, I. D. Bhatt, R. S. Rawal, and V. Pande, Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM), Food Chem., 207, 115-124 (2016). https://doi.org/10.1016/j.foodchem.2016.03.081
  13. R. F. Yanga, L. L. Genga, H. Q. Lub, and X. D. Fanc, Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni, Ultrason. Sonochem., 34, 571-579 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.037
  14. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts, Appl. Chem. Eng., 24(2), 177-183 (2013).
  15. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200 (1958). https://doi.org/10.1038/1811199a0

Cited by

  1. 마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화 vol.32, pp.2, 2021, https://doi.org/10.14478/ace.2021.1005