본 논문은 ACE2000 시스템 소프트웨어의 Release 시점을 예측할 수 있는 최적 배포문제로, 시스템의 안정도를 평가해 볼 수 있는 측면에서 소프트웨어 최적 배포문제에 대해 살펴보고 평가기준을 제시하여 제품의 적기 공급 및 개발자원의 효율적 이용 측면을 분석한다. 즉, 신뢰성 평가척도와 개발 비용을 고려한 최적 배포문제를 기술하였다. 또 여러 가지 소프트웨어 신뢰도 성장모델 중 지수형 모델을 근거로 한 소프트웨어 개발비용과 신뢰성 평가기준을 고려한 배포시기를 결정하여 보았다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.40
no.2
/
pp.26-37
/
2003
An optimal software release, which is related to the development cost, error detection and correction under the various operation systems, is a critical factor for managing project. This paper described optimal software release issues to predict the release time of large switching system with the system stability point of view and evaluated a timely supply of target system, proper utilization of resources under the software reliability valuation basis. Finally, Using initial failure data, based on the exponential reliability growth model methodology, optimal release time, and analysis of failure data during the system testing and managing methodologies were presented.
The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.7A
/
pp.649-658
/
2006
Recently, Software Development was applied to new-approach methods as a various form : client-server system and web-programing, object-orient concept, distributed development with a network environments. On the other hand, it be concerned about the distributed development technology and increasing of object-oriented methodology. These technology is spread out the software quality and improve of software production, reduction of the software develop working. Futures, we considered about the distributed software development technique with a many workstation. In this paper, we discussed optimal release problem based on a stochastic differential equation model for the distributed Software development environments. In the past, the software reliability applied to quality a rough guess with a software development process and approach by the estimation of reliability for a test progress. But, in this paper, we decided to optimal release times two method: first, SRGM with an error counting model in fault detection phase by NHPP. Second, fault detection is change of continuous random variable by SDE(stochastic differential equation). Here, we decide to optimal release time as a minimum cost form the detected failure data and debugging fault data during the system test phase and operational phase. Especially, we discussed to limitation of reliability considering of total software cost probability distribution.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.588-591
/
2009
In ubiquitous computing GIS services, it is possible to use the spatio-temporal data anytime through the mobile device. GIS services regularly update use the latest spatio-temporal data to provide the most suitable services. For this situation, update data is distributed to CD or wired networks update services. However, this method has problem to propagate update data to users as taking long time. In this paper, suggests a synchronization system which propagate update data to users for reducing processing time efficiently. This synchronization system collects update data in the field and synchronizes server with collected data to use mobile devices by real time. For this system, I design and materialize synchronization module which updates update data and wireless network module.
The mobile application based on the Android platform is simple to decompile, making it possible to create malicious applications similar to normal ones, and can easily distribute the created malicious apps through the Android third party app store. In this case, the Android malicious application in the smartphone causes several problems such as leakage of personal information in the device, transmission of premium SMS, and leakage of location information and call records. Therefore, it is necessary to select a optimal model that provides the best performance among the machine learning techniques that have published recently, and provide a technique to automatically identify malicious Android apps. Therefore, in this paper, after adopting the feature engineering to Android apps on official test set, a total of four performance evaluation experiments were conducted to select the machine learning model that provides the optimal performance for Android malicious app detection.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.4
s.310
/
pp.50-57
/
2006
In Electronic Commerce, the latest most of the personalized recommender systems have applied to the collaborative filtering technique. This method calculates the weight of similarity among users who have a similar preference degree in order to predict and recommend the item which hits to propensity of users. In this case, we commonly use Pearson Correlation Coefficient. However, this method is feasible to calculate a correlation if only there are the items that two users evaluated a preference degree in common. Accordingly, the accuracy of prediction falls. The weight of similarity can affect not only the case which predicts the item which hits to propensity of users, but also the performance of the personalized recommender system. In this study, we verify the improvement of the prediction accuracy through an experiment after observing the rule of the weight of similarity applying Vector similarity, Entropy, Inverse user frequency, and Default voting of Information Retrieval field. The result shows that the method combining the weight of similarity using the Entropy with Default voting got the most efficient performance.
KIPS Transactions on Computer and Communication Systems
/
v.9
no.1
/
pp.9-16
/
2020
The k-anonymity scheme has been widely used to protect private information when Big Data are distributed to a third party for research purposes. When the scheme is applied, an optimal k value determination is one of difficult problems to be resolved because many factors should be considered. Currently, the determination has been done almost manually by human experts with their intuition. This leads to degrade performance of the anonymization, and it takes much time and cost for them to do a task. To overcome this problem, a simple idea has been proposed that is based on machine learning. This paper describes implementations and experiments to realize the proposed idea. In thi work, a deep neural network (DNN) is implemented using tensorflow libraries, and it is trained and tested using input dataset. The experiment results show that a trend of training errors follows a typical pattern in DNN, but for validation errors, our model represents a different pattern from one shown in typical training process. The advantage of the proposed approach is that it can reduce time and cost for experts to determine k value because it can be done semi-automatically.
Cloud computing emerges as a new paradigm for deploying, managing and offering IT resources as a service anytime, anywhere on any devices. Cloud computing data center stores many IT resources through resource integration. So cloud computing system has to be designed by technology and policy to make effective use of IT resources. In other words, cloud vendor has to provide high quality services to all user and mitigate the dissipation of IT resources. However, vendors need to predict the performance of cloud services and the use of IT resources before releasing cloud service. For solving the problem, this research presents cloud service modeling on network environment and evaluation index for availability optimization of cloud service. We also study how to optimize an amount of requested cloud service and performance of datacenter using CloudSim toolkit.
This study examines which factors will act as important factors for the public in designing a platform in the future to raise public awareness of the horse industry, and through this, a study on platform design factors of the horse industry to present insights on optimal platform design. For this study, structured questionnaires were distributed to 300 domestic adults who were interested in the horse industry to collect data, and the research questions set by using the statistical processing program SPSS 22.0 Ver were verified. As a result of the study, the usefulness of information in the central route and the playfulness of the information source among the peripheral routes were the most influential factors for consumer attitudes, and the up-to-dateness of information in the central route on consumer behavioral intentions. It was found that the attractiveness of the information source among the surrounding routes was the most influential factor. In addition, it was found that the positive attitude of consumers toward the horse industry platform is a factor that has a positive effect on the purchase intention and positive word of mouth intention for the horse industry in the future. Based on these results, this researcher needs to design content that can unravel useful information related to the horse industry in an interesting way to raise public awareness of the horse industry, and to provide the latest trends related to the horse industry at all times to draw real demand It should be possible and suggested that a design configuration that can make the platform feel more attractive is needed.
Sunwook Jung;Seongju Lee;Beom Woo Kang;Yongjun Park
The Transactions of the Korea Information Processing Society
/
v.13
no.11
/
pp.604-618
/
2024
The main challenge facing recent complex neural network models, which have shown competitive accuracy, is their efficient deployment in multi-GPU systems. The complex inter-layer dependences of the neural network models combined with the variable data communication overhead of multi-GPU systems make it almost impossible to achieve a fair performance gain under manual scheduling. To address this problem, we propose a new layer-scheduling approach called NN Maestro, which generates an efficient parallel execution strategy for multi-GPU systems that minimizes the data communication overhead, thereby improving the inference latency for complex neural network models. NN Maestro evaluates the advantages of multi-GPU scheduling using a pre-trained SVM classifier and calculates the scheduling order of layers based on Topological Sort and Significance Cost. Then, NN Maestro selects the optimal GPU by comparing Placement Costs and generates the final scheduling result by grouping layers for parallel execution. On various multi-GPU configurations (2 2080Ti, 4 V100, and 4 A6000 GPUs), NN Maestro achieves up to 1.67x of performance improvement over the baseline.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.