• Title/Summary/Keyword: 최대/항복강도

Search Result 191, Processing Time 0.027 seconds

A Study on Fatigue Design for Welded Joint of STS301L (STS301L 용접이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.127-131
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds of structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. Thus, in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the. ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints.

Shear Strength and Hysteretic Behavior of SRC Column to Steel Beam Joints (SRC 기둥-H 형강보 접합부의 전단강도 및 이력거동)

  • Lee, Seung Joon;Kim, Won Ki;Seo, Dong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.277-285
    • /
    • 1997
  • To investigate the shear strength and hysteretic behavior of SRC column to H steel beam joints, seven cruciform specimens were fabricated and tested. The test specimens showed stable hysteresis behavior with a little pinching. The strength decreased with increase in deflection after the speciemens reached at the maximum strength. The shear strength of panel zones increased with increased in the concrete amount of SRC column sections. The shear strength may conservatively be estimated by the sum of shear yielding strength of steel column web, plastic bending strength of steel column flange and ultimate shear strength of concrete in the panel zone.

  • PDF

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Seismic Analysis of Traveling Sea Water Screen (해수 여과장치의 내진해석)

  • Kim, Heung-Tae;Lee, Young-Shin;Park, Young-Moon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.462-465
    • /
    • 2011
  • 본 논문에서는 유한요소모델을 사용하여 원자력 발전용 해수 여과장치에 대한 동적 내진해석을 수행하였다. 장치의 검증을 위해서 운전기준지진(Operating Basis Earthquake, OBE)과 안전정지지진(Safe Shutdown Earthquake, SSE)이 설계하중으로 작용하였을 때 부재에 미치는 영향을 평가하였다. 해석대상은 유한요소법을 사용하여 수학적 모델링을 완성하였고, 층응답스펙트럼(Floor Response Spectrum, FRS)에 따른 지진하중과 사하중등을 적용하여 해석을 수행하였다. 해석된 해수여과장치의 최대변위는 OBE 조건에서 2.5 mm 이고, SSE 조건에서 최대변위는 4.6 mm 이다. 최대응력은 OBE 조건에서 24 MPa, SSE 조건에서 44 MPa이며, 이 값은 재료의 항복강도의 각각 18%, 27% 수준이다. 이에 따라 지진하중조건에 따른 해수여과장치의 구조적 안전성이 제시되었다.

  • PDF

P-M Interaction Curve for Square CFTs with High-Strength Concrete (고강도 콘크리트를 사용한 각형 CFT 기둥의 축력-모멘트 상관곡선)

  • Choi, Young Hwan;Kim, Kang Su;Choi, Sung Mo;Lee, Sangsup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2007
  • In this study, a new design equation was presented for square CFTs with high-strength concrete subjected to axial compression and bending. In a previous study, a design equation for square CFTs with normal strength concrete was proposed. A parametric study by fiber analysis was performed taking the width-to-thickness ratio (b/t) and the relative concrete strength to the yield strength of the steel tube (fck/Fy) as the main parameters of this study to determine the maximum moment and the axial load at the maximum moment. A new constitutive model for concrete was adopted for fiber analysis in order to take into account the effect of high-strength concrete. The results of the parametric study were embedded into the method which was presented in the previous study to formulate a new design equation that can be easily used for estimating the strength of square CFTs with high-strength concrete.

Assessment of Yield Characteristics of Gas Pipeline Materials by Observing Surface-Local Deformation (미소 표면변형 관찰을 통한 가스배관 부재의 항복특성 평가)

  • Lee, Yun-Hee;Baek, Un-Bong;Cheong, In-Hyeon;Nahm, Seung-Hoon;Lee, Sang-Houck
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.92-98
    • /
    • 2008
  • A combination of the instrumented indentation and 3D morphology measurement has been tried in order to perform a real-time property measurement of degraded materials in gas pipelines; three-dimensional indent morphologies were recorded using a reflective laser scanner after a series of insturmented indentations on three metallic specimens. Dimensions of the permanent deformation zone and contact boundary were analyzed from the cross-sectional profile over an remnant indent and used for estimating yield strength and hardness, respectively. Estimated yield strength was comparable with that from uniaxial tensile test and actual hardness implying material pile-up effects was lower than the calculated value from indentation curve by $20{\sim}30%$. It means that this 3D image analysis can explain the material pile-up effects on the contact properties. Additionally, a combined system of indentation and laser sensor was newly designed by modifying a shape of the indentation loading fixture.

  • PDF

A Study on the Local Buckling Strength of Stainless Steel 304 (스테인리스 304 강재의 국부좌굴에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • Current steel-framed building design codes are based on theoretical and experimental researches on the conventional structural steel. However, the yield phenomenon of austenitic stainless steel, which is characterized by continuous yielding, is quite different from that of conventional structural steel. The offset strength, which should determine the design strength, may affect the limits of width-thickness ratio of current design codes. Stub column test results showed that the limits of width-thickness ratio satisfied both ASD and LRFD codes when 0.2% offset strength was regarded as design strength. In addition, the local buckling strengths of all stainless steel stub columns did not decrease rapidly compared with those of conventional structural steel columns, even though the width-thickness ratio exceeded the design limit.

Evaluation on the In-plane Bending Moment for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 면내 휨모멘트 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.451-459
    • /
    • 2009
  • The purpose of this study was to evaluate the in-plane bending moment for T-joints made of cold-formed square hollow steel sections. In the previous studies, the T-joint was shown not to have an obvious peak load, and the failure mode was the main chord flange failure at the branch-width-to-chord-width ratio ($\beta$) of below 0.71. Based on the experimental results, including the tests conducted by Zhao, the deformation limit of 1% B was proposed for ${16.7{\leq}2{\gamma}(=B/T){\leq}33}$ and ${0.34{\leq}{\beta}(=b_{1}/B){\leq}0.71}$. Then, the ultimate in-plane bending strength was shown to be Mu=1.5${\cdot}$M1% B. The existing strength formulae for the original T-joint were investigated and were determined to be the main chord flange failure for the branch-squared T-joint. The bending strength formulae of CIDECT and other researchers were compared with the test results. Finally, a reasonably good agreement with Zhao's formula was found. Therefore, the design guidelines were presented based on Zhao's strength formula for T-joints.

Determination of Structural Capacity Based on Deformation and Bond Strength for RC Structure at Steel Corrosion (변형과 부착강도 기반 철근 부식에 의한 RC구조물의 구조적 성능 평가)

  • Jung Wook Lee;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.449-457
    • /
    • 2023
  • In this study, the structural limit for concrete was experimentally determined against corrosion of steel. The structural limit was taken as (1) the deformation of concrete at yielding, (2) the maximum pull-out strength and (3) the pull-out strength at the level for uncorroded specimen. Corrosion of steel was accelerated by extracting charges from steel surface to govern degree of steel corrosion. As a result, an increase in the steel diameter resulted in an increase in the corrosion degree to reach the concrete deformation at yielding. Again, an increase in the steel diameter resulted in an increase in the extracted charge to meet the maximum and uncorroded-equivalent level for the bond strength. However, the mass loss was marginally affected by the steel size, reflecting that these parameters could be used to alert the structural limit.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF