P-M Interaction Curve for Square CFTs with High-Strength Concrete

고강도 콘크리트를 사용한 각형 CFT 기둥의 축력-모멘트 상관곡선

  • 최영환 (서울시립대학교 건축공학과) ;
  • 김강수 (서울시립대학교 건축공학과) ;
  • 최성모 (서울시립대학교 건축공학과) ;
  • 이상섭 (한국건설기술연구원 건축구조.재료 연구실)
  • Received : 2007.07.16
  • Accepted : 2007.10.24
  • Published : 2007.12.27

Abstract

In this study, a new design equation was presented for square CFTs with high-strength concrete subjected to axial compression and bending. In a previous study, a design equation for square CFTs with normal strength concrete was proposed. A parametric study by fiber analysis was performed taking the width-to-thickness ratio (b/t) and the relative concrete strength to the yield strength of the steel tube (fck/Fy) as the main parameters of this study to determine the maximum moment and the axial load at the maximum moment. A new constitutive model for concrete was adopted for fiber analysis in order to take into account the effect of high-strength concrete. The results of the parametric study were embedded into the method which was presented in the previous study to formulate a new design equation that can be easily used for estimating the strength of square CFTs with high-strength concrete.

본 논문은 55 MPa 이하 강도의 콘크리트를 사용한 CFT 기둥에 대한 P-M 상관곡선을 제안한 선행연구의 후속연구로서, 2005 AISC에서 새롭게 포함된 55 MPa 이상의 고강도 콘크리트를 사용한 정방형 CFT 기둥의 P-M 설계식을 제안하였다. 선행연구에서 제안한 개념을 적용하여 고강도 콘크리트를 사용한 CFT에서의 최대모멘트와 최대모멘트시의 압축력을 구하기 위해 강관의 폭두께비(b/t)와 강관의 항복강도에 대한 콘크리트의 상대강도(fck/Fy)를 중요 변수로 총 36개의 대상단면을 선정하여 Fiber Analysis를 통한 변수해석을 수행하였다. 강관의 응력-변형율 관계는 완전탄소성으로 가정하였고 콘크리트는 고강도 콘크리트에 적용가능한 Sakino의 모델을 이용하였다. 변수해석으로부터 얻어진 결과로부터 상기의 두 변수를 이용하여 고강도 콘크리트를 사용한 각형 CFT 기둥의 설계에 쉽게 사용할 수 있는 설계식을 제안하였다. 기존의 실험결과와 비교한 결과 본 논문에서 제시하는 방법은, 2005 AISC에서 제시하는 방법에 비해 보다 더 쉽고 간단하게 사용될 수 있는 것으로 나타났다.

Keywords

References

  1. 대한건축학회. (2005). 건축설계기준(Korean Building Code)
  2. 최영환, 이문성 (2005). AISC/LRFD 설계법을 수정한 정사각 형 단면의 콘크리트 충전 각형강관 보-기둥의 설계식, 대한건축학회, 21권 11호, pp. 77-84
  3. ACI. (2005). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Detroit, Michigan
  4. Aho, M.F. (1996). A database for encased and concrete-filled columns, Georgia Institute of Technology, GA
  5. AIJ. (1987). Structural calculations of steel reinforced concrete structures, Architectural Institute of Japan, Tokyo, Japan
  6. AISC. (2001). Manual of Steel Construction - Load and Resistance Factor Design, American Institute of Steel Construction, Chicago, IL
  7. AISC. (2005). Manual of Steel Construction - Load and Resistance Factor Design, American Institute of Steel Construction, Chicago, IL
  8. Bruneau, M., and Murson, J. Cyclic testing of composite concrete-filled steel pipe column base detail. Proceedings of the Sixth ASCCS International Conference on Steel-Concrete Composite Structures, LA., USA
  9. Choi, Y.-H., Foutch, D.A., and LaFave, J.M. (2006). New approach to AISC P-M interaction curve for concrete filled tube beam-columns. Engineering Structures, Vol. 28, No. 11, pp. 1586-1598 https://doi.org/10.1016/j.engstruct.2006.02.009
  10. Ellobody, E., Young, B., and Lam, D. (2006). Behaviour of normal and high strength concrete- filled compact steel tube circular stub columns. Journal of constructional steel research, Vol. 62, No. 7, pp. 706-715 https://doi.org/10.1016/j.jcsr.2005.11.002
  11. Eurocode 4. (1996). Design of Steel and concrete structures, Part I.I. General rules and rules for buildings, European Committee for standardization, Brussels, Belgium
  12. Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004). Behavior of Eccentrically Loaded Concrete- Filled Steel Tubular Columns. Journal of structural engineering, Vol. 130, No. 2, pp. 203-212 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  13. Furlong, R.W. (1967). Strength of steel-encased concrete beam columns. Journal of the Structural division, Vol. 93, 113-124
  14. Gho, W.-M., and Liu, D. (2004). Flexural behaviour of high-strength rectangular concrete-filled steel sections. Journal of Constructional Steel Research, Vol. 60, No. 11, pp. 1681-1696 https://doi.org/10.1016/j.jcsr.2004.03.007
  15. B.C., Tort, C., Hajjar, J.F., and Schiller, P.H. (2001). A synopsis of studies of the monotonic and cyclic behavior of concrete-filled steel tube beam-columns. Report ST-01-4, University of Minnesota, MN
  16. Han, L.-H. (2004). Flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research, Vol. 60, No. 2, pp. 313-337 https://doi.org/10.1016/j.jcsr.2003.08.009
  17. Leon, R.T., and Aho, M. 'Towards new design provisions for composite columns. Proceedings of the conference on composite construction in steel and concrete IV, Canada, pp. 518-527
  18. Liu, D. (2004). Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading. Thin-Walled Structures, Vol. 42, No. 12, pp. 1631-1644 https://doi.org/10.1016/j.tws.2004.06.002
  19. Liu, D. (2005). Tests on high-strength rectangular concrete - filled steel hollow section stub columns. Journal of Constructional Steel Research, Vol. 61, No. 7, pp. 902-911 https://doi.org/10.1016/j.jcsr.2005.01.001
  20. Liu, D., and Gho, W.-M. (2005). Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns. Thin-Walled Structures, Vol. 43, No. 8, pp. 1131-1142 https://doi.org/10.1016/j.tws.2005.03.007
  21. Lu, Y.Q., and Kennedy, D.J.L. (1994). The flexural behaviour of concrete-filled hollow structural sections. Canadian Journal of civil Engineering, Vol. 21, No. 1, pp. 111-130 https://doi.org/10.1139/l94-011
  22. Lue, D.M., Liu, J.-L., and Yen, T. (2007). Experimental study on rectangular CFT columns with high-strength concrete. Journal of Constructional Steel Research, Vol. 63, No. 1, pp. 37-44 https://doi.org/10.1016/j.jcsr.2006.03.007
  23. Sakino, K., Nakahara, H., Morino, S., and Nishiyama, I. (2004). Behavior of Centrally Loaded Concrete- Filled Steel-Tube Short Columns. Journal of Structural Engineering, Vol. 130, No. 2, pp. 180-188 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  24. Sakino, K., and Sun, Y. (1994). Stress-strain curve of concrete confined by rectilinear hoop. Journal of Structural Construction Engineering Vol. 461, pp. 95-104
  25. Schneider, S.P. (1998). Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, Vol. 124, No. 10, pp. 1125-1138 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  26. Shanmugam, N.E., and Lakshmi, B. (2001). State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, Vol. 57, No. 10, pp. 1041-1080 https://doi.org/10.1016/S0143-974X(01)00021-9
  27. Varma, A.H., Ricles, J.M., Sause, R., and Lu, L.-W. (2002). Experimental behavior of high strengh square concrete-filled steel tube beam-columns. Journal of Structural Engineering, Vol. 128, No. 3, pp. 309-318 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309)
  28. Webb, J. (1993). High-Strength Concrete: Economics, Design and Ductility. Concrete International, Vol. 15, No. 1, pp. 27-32
  29. Zhang, W., and Shahrooz, B.M. (1999). Comparison between ACI and AISC for concrete-filled tubular columns. Journal of Structural Engineering, Vol. 125, No. 11, pp. 1213-1223 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1213)