DOI QR코드

DOI QR Code

Determination of Structural Capacity Based on Deformation and Bond Strength for RC Structure at Steel Corrosion

변형과 부착강도 기반 철근 부식에 의한 RC구조물의 구조적 성능 평가

  • Jung Wook Lee (Department of Civil & Environment System Engineering, Hanyang University) ;
  • Ki Yong Ann (Department of Civil & Environment Engineering, Hanyang University)
  • 이정욱 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Received : 2023.11.07
  • Accepted : 2023.11.28
  • Published : 2023.12.30

Abstract

In this study, the structural limit for concrete was experimentally determined against corrosion of steel. The structural limit was taken as (1) the deformation of concrete at yielding, (2) the maximum pull-out strength and (3) the pull-out strength at the level for uncorroded specimen. Corrosion of steel was accelerated by extracting charges from steel surface to govern degree of steel corrosion. As a result, an increase in the steel diameter resulted in an increase in the corrosion degree to reach the concrete deformation at yielding. Again, an increase in the steel diameter resulted in an increase in the extracted charge to meet the maximum and uncorroded-equivalent level for the bond strength. However, the mass loss was marginally affected by the steel size, reflecting that these parameters could be used to alert the structural limit.

본 연구에서는 철근의 부식에 대한 콘크리트의 구조적 한계를 실험적으로 정의하였다. 구조적 한계는 (1) 항복 시 콘크리트의 변형, (2) 최대 부착강도, (3) 부식되지 않은 시험체 수준의 부착강도로 고려하였다. 철근 표면에서 전하를 추출하는 전기화학적 방식을 이용하여 철근 부식을 촉진시켰다. 그 결과, 철근 직경이 증가할수록 부식 정도가 증가하여 콘크리트 변형은 항복상태에 도달하는 것으로 나타났다. 또한 철근 직경의 증가는 최대 부착강도와 부식되지 않은 수준의 부착강도에 도달되기 위한 전류 인가량을 증가시켰다. 그러나 질량 손실은 철근 크기에 미미하게 영향을 받았는데, 이는 구조적 성능의 매개변수(콘크리트 변형, 부착강도의 변화)를 통해 철근 부식에 의한 구조물의 사용수명을 대변할 수 있음을 의미한다.

Keywords

Acknowledgement

이 논문은 2021년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 연구비 지원에 의해 수행되었습니다(No. NRF-2020 R1A2C3012248). 이에 감사드립니다.

References

  1. ACI 222R-19. (2019). Guide to Protection of Reinforcing Steel in Concrete against Corrosion, American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI 365.1R-17. (2017). Report on Service Life Prediction, American Concrete Institute, Farmington Hills, MI, USA.
  3. Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review, Cement and Concrete Composites, 25(4-5), 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0
  4. Andrade, C. (2017). Reliability analysis of corrosion onset: initiation limit state, Journal of Structural Integrity and Maintenance, 2(4), 200-208. https://doi.org/10.1080/24705314.2017.1388693
  5. Andrade, C., Alonso, C., Molina, F.J. (1993). Cover cracking as a function of bar corrosion: part I-experimental test, Materials and Structures, 26, 453-464. https://doi.org/10.1007/BF02472805
  6. Ann, K.Y. (2005). Enhancing the Chloride Threshold Level for Steel Corrosion in Concrete, Ph.D Thesis, Imperial College London (University of London).
  7. Bazant, Z.P. (1979). Physical model for steel corrosion in concrete sea structures-application, Journal of the Structural Division, 105(6), 1155-1166. https://doi.org/10.1061/JSDEAG.0005169
  8. Buenfeld, N.R., Broomfield, J.P. (2002). Influence of electrochemical chloride extraction on the bond between steel and concrete, Magazine of Concrete Research, 52(2), 79-91. https://doi.org/10.1680/macr.2000.52.2.79
  9. Concha, N., Oreta, A.W. (2018). A model for time-to-cracking of concrete due to chloride induced corrosion using artificial neural network, IOP Conference Series: Materials Science and Engineering, 431(7), 072009.
  10. El Maaddawy, T., Soudki, K. (2007). A model for prediction of time from corrosion initiation to corrosion cracking, Cement and Concrete Composites, 29(3), 168-175. https://doi.org/10.1016/j.cemconcomp.2006.11.004
  11. Hwang, W., Ann, K.Y. (2023). Determination of rust formation to cracking at the steel-concrete interface by corrosion of steel in concrete, Construction and Building Materials, 367, 130215.
  12. ISO 1920-12:2015. (2015). Testing of Concrete - Part 12: Determination of the Carbonation Resistance of Concrete-Accelerated Carbonation Method, International Organization for Standardization.
  13. ISO WD. (2022). Assessment, Prevention and Repair for Steel Corrosion in Reinforced Concrete Structures, International Standard Organization. Working Draft NP 18726.
  14. Kallias, A.N., Rafiq, M.I. (2010). Finite element investigation of the structural response of corroded RC beams, Engineering Structures, 32(9), 2984-2994. https://doi.org/10.1016/j.engstruct.2010.05.017
  15. Kordtabar, B., Dehestani, M. (2021). Effect of corrosion in reinforced concrete frame components on pushover behavior and ductility of frame, Structural Concrete, 22(5), 2665-2687. https://doi.org/10.1002/suco.202000309
  16. Lim, S., Akiyama, M., Frangopol, D.M. (2016). Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling, Engineering Structures, 127, 189-205. https://doi.org/10.1016/j.engstruct.2016.08.040
  17. Liu, Y., Weyers, R.E. (1998). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures, ACI Materials Journal, 95(6), 675-680. https://doi.org/10.14359/410
  18. Neves, R., Torrent, R., Imamoto, K. (2018). Residual service life of carbonated structures based on site non-destructive tests, Cement and Concrete Research, 109, 10-18. https://doi.org/10.1016/j.cemconres.2018.04.002
  19. Paewchompoo, N., Yodsudjai, W., Chindaprasirt, P. (2020). Corrosion-induced cracking time in steel fiber-reinforced concrete: experiment and finite element method, ACI Materials Journal, 117(4), 3-12. https://doi.org/10.14359/51724620
  20. Reou, J.S., Ann, K.Y. (2010). The distribution of hydration products at the steel-concrete interface for concretes subjected to electrochemical treatment, Corrosion Science, 52(6), 2197-2205. https://doi.org/10.1016/j.corsci.2010.02.037
  21. Reou, J.S., Ann, K.Y. (2009). Electrochemical assessment on the corrosion risk of steel embedment in OPC concrete depending on the corrosion detection techniques, Materials Chemistry and Physics, 113(1), 78-84. https://doi.org/10.1016/j.matchemphys.2008.07.063
  22. Sanchez-Deza, A., Bastidas, D.M., Iglesia, A.L., Mora, E.M., Bastidas Rull, J.M. (2018). Service life prediction for 50-year-old buildings in marine environments, Revista de Metalurgia, 54(1) e111.
  23. Weyers, R.E. (1998). Service life model for concrete structures in chloride laden environments, ACI Materials Journal, 95(4), 445-453. https://doi.org/10.14359/387
  24. Zhu, X., Zi, G. (2017). A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage, Construction and Building Materials, 137, 330-344. https://doi.org/10.1016/j.conbuildmat.2017.01.103