• Title/Summary/Keyword: 초탄성 해석

Search Result 85, Processing Time 0.026 seconds

자동차 충돌해석 전용프로그램(AutoCRASH)를 이용한 정면/측면 충돌해석

  • 강신유;김헌영
    • Computational Structural Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 1999
  • 독자적인 자동차 충돌해석용 프로그램 개발 및 응용기술을 목표로 Explicit 수식화, 셀 요소의 정식화, 교체요소의 정식화, 비선형스프링 요소의 개발, 초탄성 고무재료의 개발, Hourglass 제어, 접촉알고리즘 정식화 등의 프로그램의 기본 모듈을 구성하였고, 그래프 출력용 포스트 프로그램을 개발하였다. 비선형스프링, 에어백 모듈, 안전벨트 모듈 등이 개발되었으며, 자체구조물들의 정면·측면 충돌해석을 수행하고 상용충돌해석프로그램들과 그 결과를 비교하여 개발된 프로그램의 신뢰성을 확인하였다. 또한, 측면충돌 모델을 사용하여 설계초기단계에서 빠른 해석을 수행할 수 있도록 하는 Hybrid 모델링 기법을 개발하여 기존의 쉘모델의 결과와 비교·검토하였다. Hybrid 모델링시 조인트 부의 특성을 측면해석 모델에 적용하여 그 타당성을 검증하였다.

  • PDF

Characteristic Analysis of Superelastic Shape Memory Alloy Long-Lasting Damper with Pretension (긴장력이 적용된 초탄성 형상기억합금 장수명 댐퍼의 특성 분석)

  • Lee, Heon-Woo;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • A seismic structure is an earthquake-resistant design that dissipates seismic energy by equipping the structure with a device called a damper. As research efforts to reduce earthquake damage continue to rise, technology for isolating vibrations in structures has evolved by altering the materials and shapes of dampers. However, due to the inherent nature of the damper, there are an unescapable restrictions on the extent of plastic deformation that occurs in the material to effectively dissipate energy. Therefore, in this study, we proposed a long-life damper that offers semi-permanently usage and enhances structural performance by applying additional tension which is achieved by utilizing super elastic shape memory alloy (SSMA), a material that self-recovers after deformation. To comprehensively understand the behavior of long-life dampers, finite element analysis was performed considering the design variables such as material, wire diameter, and presence of tension, and response behavior was derived to analyze characteristics such as load resistance, energy dissipation, and residual displacement to determine the performance of long-life dampers in seismic structure. Excellence has been proven from finite element analysis results.

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

탄성파 탐사를 이용한 전곡리 퇴적층 조사

  • 최광희;김종욱
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.33-38
    • /
    • 2003
  • '탄성파 굴절법 탐사(Seismic Refraction Method 또는 Refraction Seismics)'는 20세기 초부터 석유탐사와 암염돔 탐사 등 지하 자원 탐사에 널리 이용되어 왔으며, 오늘날에도 여러 지구물리학적 탐사와 더불어 지하구조 해석 및 각종 탐사와 지반공학에 활용되고 있다(Palmer, 1986). 특히 지질학은 물론, 고고학 등 지형학의 유관 학문에서도 그 활용 사례가 증가하고 있는데, 비파괴적인 방법으로 지하구조에 대한 정보를 비교적 용이하게 얻을 수 있기 때문이다. (중략)

  • PDF

Finite Element Analysis of NiTi Alloy Tubes with the Superelastic Behavior (초탄성 거동을 고려한 NiTi 합금 튜브의 변형해석)

  • Kang, Woo-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.100-106
    • /
    • 2006
  • NiTi alloy known as its shape memory effect also has superelastic characteristic, which makes it possible to be elastic under large deformation. Since the tensile strength of the alloy is very high and density is low compared to carbon steel, it can be applied to lightweight structural design. In order to design structures with shape memory alloy, finite element analysis is used and a constitutive algorithm based on Aurrichio's model is added to LS-DYNA as a user subroutine. Explicit time integration and shell element formulation are used to simulate thin-walled structures. The algorithm uses Drucker-Prager type loading condition to calculate martensite volume fraction during the transformation. The implemented algorithm is verified in uni-axial loading condition and martensite phase transformation can be detected well with the algorithm. In this study, as a energy absorbing structure, thin-walled tube is modeled with finite elements and the deformation behavior is studied. Simulation results has shown that the martensite transformation was generated in loading condition. After plastic deformation reached, the load decreases linearly without reverse martensite transformation.

무요소 해석법에 의한 초탄성 재료의 변형에 관한 연구

  • 진석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.732-735
    • /
    • 1995
  • A meshless method which is the new computational method being developed recently, is applied to the simulation of large deformation problems. Among the many types of meshless methods, the Reproducing Kernel particle method (RKPM) is used and the nearly incompressible hyperelastic materials are employed in simulations. The meshless methods can avoid metsh distortions and mesh entanglements that may frequently happen when the mesh-based methods like finite element method are used for the simulations of largely deformed materials. A general features of meshless methods are reviewed and the formulation of RKPM is presented. Next, the performance of explicit RKPM is demonstrated by examples.

  • PDF

Higher Order Axismmetric Boundary Element Analysis of Turbine Rotor Disk of the Small Turbojet Engine (고차 축대칭 경계 요소에 의한 소형 터보젯 엔진의 터빈 로우터 디스크 해석)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-144
    • /
    • 1998
  • The BEM for linear elastic stress analysis is applied to the highly rotating axisymmetric body problem which also involves the thermoelastic effects due to steady-state thermal conduction. The axisymmetric BEM formulation is briefly summarized and an alternative approach for transforming the volume integrals associated with such body force kernels into equivalent boundary integrals is described in a way of using the concept of inner product and vector identity. A discretization scheme for higher order BE is outlined for numerical treatment of the resulting boundary integral equations, and it is consequently illustrated by determining the stress distributions of the turbine rotor disk of the small turbojet engine(ADD 500) for which a FEM stress solution has been furnished by author.

  • PDF

電算流體力學의 發達過程과 展望

  • Graves, Randolph A.
    • Journal of the KSME
    • /
    • v.22 no.4
    • /
    • pp.262-270
    • /
    • 1982
  • 머지않은 장래에는 이러한 초컴퓨터와 신기술들이 유체역학의 주요한 발전을 주도하고, 오랫동안 취급하지 못하였던 난류유통도 해석할 수 있을 것이며, 복잡한 비행기 형상의 외부 유통도 발 전된 형체막형화 기법과 격자발생법 및 그래픽 기술을 이용하여 손쉽게 계산될 것이다. 금세기 말까지의 공기역학의 발전은 주로 공기의 탄성효과를 고려한 비정상압축성 공기역학에서 이루 어질 것이다.

  • PDF

Rubber Shear Modulus Prediction of Finite Element Method (전산해석을 통한 고무전단강성 예측)

  • Kwon, Tae-Hoon;Kim, Byung-Hoon;Rho, Tae-Ho;Lee, Won-Bok;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.189-192
    • /
    • 2007
  • The qualification test of rubber product is consisted of uniaxial tensile, pure shear, biaxial and compression test. Uniaxial test result is used for material property of Finite Element Method. Comparison of uniaxial tensile test and analysis satisfied requirement. A study has qualificated result of QLS analysis model for material property of uniaxial test and shear modulus.

  • PDF

Numerical and Experimental Study on Mechanical Properties of Gelatin as Substitute for Brain Tissue (뇌 조직의 기계적 물성에 관한 젤라틴을 이용한 수치해석 및 실험적 연구)

  • Bahn, Yong;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The mechanical properties of living tissues have been major subjects of interest in biomechanics. In particular, the characteristics of very soft materials such as the brain have not been fully understood because experiments are often severely limited by ethical guidelines. There are increasing demands for studies on remote medical operations using robots. We conducted compression tests on brain-like specimens made of gelatin to find substitutes with the mechanical properties of brain tissues. Using a finite element analysis, we compared our experimental data with existing data on the brain in order to establish material models for brain tissues. We found that our substitute models for brain tissues effectively simulated their mechanical behaviors.