• Title/Summary/Keyword: 초고성능 시멘트 복합체

Search Result 18, Processing Time 0.029 seconds

Flow-dependent Fiber Orientation Distribution and Its Effect on the Tensile Behavior of Intra High Performance Cementitious Composites (유동에 따른 섬유 방향성 분포특성 변화가 초고성능 시멘트 복합체의 인장거동에 미치는 영향)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.483-484
    • /
    • 2010
  • In this paper, it was intended to understand the effect of the fiber orientation distribution on the tensile behavior of Intra High Performance Cementitious Composites (UHPCC) and to estimate flow-dependent fiber orientation distribution and the corresponding tensile behavior of UHPCC.

  • PDF

Tensile Stress-Crack Opening Relationship of Ultra High Performance Cementitious Composites(UHPCC) Used for Bridge Decks (바닥판 적용 초고성능 시멘트 복합체의 인장응력-균열개구 관계)

  • Kwon, Seung Hee;Lee, Seung Kook;Park, Sung Yong;Cho, Keun Hee;Cho, Jeong Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.46-54
    • /
    • 2013
  • Two different UHPCCs having different fiber lengths and volume fractions are considered to be applied to bridge decks. The objective of this study is to estimate cracking resistance of the two UHPCCs. The notched beam tests were performed with the UHPCCs, and the relationships between load and CMOD(Crack Mouth Opening Displacement) were obtained from the tests. The tensile stress and crack opening relationships optimally fitting the measured load-CMOD curves were found through the inverse analyses. The UHPCC with 2% volume fraction of 13 mm long fiber has lower fracture energy than the UHPCC with 0.5% and 1.0% volume fractions of 16.3 mm and 19.5 mm long fibers, respectively. It indicates that the latter UHPCC is more effective in uniformly distributing crack formation and reducing crack width.

Preliminary Study on Development of High Strength Cement Composites at 2,000kg/㎥ of Specific Weight (단위중량 2,000kg/㎥급 고강도 시멘트 복합체 개발을 위한 기초연구)

  • Jeong, Yeon-Ung;Lim, Gwi-Hwan;Kang, Yong-Hak;Jung, Sang-hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.562-570
    • /
    • 2020
  • This study explores manufacturing technology and basic properties of high strength cement composites at 2,000kg/㎥ of specific weight. It is suggested that lightweight-high strength cement composites can be produced by substituting silica sand in ulta-high performance concrete mixture with lightweight materials such as solid bubbles and lightweight fine aggregates. The 28-day compressive strengths of cement composites with solid bubbles were from 116MPa to 141MPa at below 2.0g/㎤ of unit density while the cement composites with lightweight aggregates possessed lower compressive strength and higher unit density. The specific weight calculated from mixture proportions did not have significant difference with unit density of hardened cement composites, indicating that unit density of hardened cement composites can be estimated from the specific weight in mixture proportions.

Evaluating Early Age Shrinkage Behavior of Ultra High Performance Cementitious Composites (UHPCC) with CSA Expansive Admixture and Shrinkage Reducing Agent (CSA계 팽창재 및 수축 저감제의 혼입에 따른 UHPCC의 초기 수축 거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.441-448
    • /
    • 2011
  • In this study, experimental tests of chemical and autogenous shrinkage were performed to evaluate the early age shrinkage behaviors of ultra high performance cementitious composites (UHPCC) with various replacement ratios of silica fume (SF), shrinkage reducing agent (SRA), expansive admixture (EA), and superplasticizer (SP). Starting time of self-desiccation, was analyzed by comparing the setting times and the deviated point of chemical and autogenous shrinkage strains. The test results indicated that both SF and SRA augment the early age chemical shrinkage, whereas SP delays the hydration reaction between cement particles and water, and reduces chemical shrinkage. About 49% of autogenous shrinkage was depleted by synergetic effect of SRA and EA. The hardening of UHPCC was catalyzed by containing EA. Self-desiccation of UHPCC occurred prior to the initial setting due to the high volume fraction of fibers and low water-binder ratio (W/B).

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Experimental Study on the Improvement of Workability of Cementitious Composites Using Nano-bubble Water (나노버블수를 활용한 시멘트 복합체의 작업성 증진에 대한 실험적 연구)

  • Lee, Nankyoung;Kang, Sung-Hoon;Moon, Juhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.27-32
    • /
    • 2021
  • This study was conducted to improve the workability of cementitious composites using nano-bubble water. The used nano-bubble water contains 7% of nano-sized bubbles with an averaged bubble size of 750 nm. Various different types of cementitious composites including ultar-high performance concrete, lightweight cementitious composites, and high-strength mortar have been tested to identify the changes of material properties. From the use of nano-bubble water, it was confirmed that workability has been improved by 3-22%. On the other hand, other material characteristics such as compressive strength did not have noticeable changes. Therefore, it was proposed that the use of nano-bubble water can enhance workability of cementitious composites without having significant impact on other material properties.

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers (섬유 조합에 따른 초고성능 콘크리트의 인장거동)

  • Choi, Jung-Il;Koh, Kyung-Taek;Lee, Bang-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.

The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites(UHPCC) (초고성능 시멘트 복합체의 압축강도에 대한 강섬유 보강 효과)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.110-118
    • /
    • 2010
  • This research dealt with the effect of steel-fiber reinforcement on the compressive strength of ultra high performance cementitious composites (UHPCC) and compared with that in normal steel-fiber reinforced concrete(SFRC). With wide range of compressive strength of UHPCC, experiments on the fiber reinforcement effect confirmed that the compressive strength in UHPCC is also improved by adding fibers as in normal SFRC. The experimental results were compared with previous researches about reinforcement effect by adding fibers, which are limited within 100MPa compressive strength. The comparison revealed the linear relationship between $f'_{cf}-f'_c$ and RI regardless of the magnitude of compressive strength, from which a general equation to express the effect of fiber reinforcement, applicable to various SFRC's with wide range of compressive strength including UHPCC.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

An Experimental Study on the Period of Cold Joint Occurrence Effecting Shear Bond Performances of UHSCC (콜드조인트 발생시간이 초고강도 섬유보강 시멘트 복합체의 전단 접착 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Min-Seong;Yang, Hyun-Min;Lee, Han-Seung;Cho, Keun-hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is to evaluate the performance on the compressive bonding shear strength of ultra-high strength steel fiber reinforced cementitous composites(UHSCC). As a result of compressive bonding shear strength through Direct shear test, It was found that the specimen($150{\times}150{\times}150mm$) of NC(Normal concrete) + NC showed similar compressive bonding shear strength at whole experimental level. On the other hand, the specimen of UHSCC + UHSCC showed decrease of compressive bonding shear strength from after 30 minutes of the retarded placement than 0 minute. As a result of analyzing failure mode of bonding interface, It was found that the specimen of NC + NC showed mixed failure at whole experimental level. In case of the specimen of UHSCC + UHSCC, it showed interface failure from the specimen that are 30 minutes, 60 minutes and 90 minutes of delay of concrete placing. As a result of analyzing XRD test in terms of the placement interface on the specimen of NC and UHSCC, relatively much amount of $SiO_2$ was detected from the specimen of UHSCC than that of NC. It is judged that the most of main components of coating film shown in the specimen of UHSCC is $SiO_2$. In conclusion, it is judged that UHSCC which is made from after 30 minutes of delay of concrete placing is unable to be used as structural member because of deterioration of bonding performance. From later study, it is judged that the improvement of bonding performance from the part of cold joint occurrence is necessary through the interface preparation method.