DOI QR코드

DOI QR Code

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers

섬유 조합에 따른 초고성능 콘크리트의 인장거동

  • 최정일 (전남대학교 건축학부) ;
  • 고경택 (한국건설기술연구원, 구조융합연구소) ;
  • 이방연 (전남대학교 건축학부)
  • Received : 2015.02.02
  • Accepted : 2015.02.23
  • Published : 2015.07.30

Abstract

Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.

초고성능 콘크리트는 높은 강도와 유동성을 갖는 우수한 재료 특성을 나타내는 콘크리트이다. 그러나 고연성 시멘트 복합체에 비하여 낮은 연성을 나타낸다. 이 연구에서는 강섬유와 마이크로섬유의 조합이 초고성능 콘크리트의 인장거동에 미치는 영향을 조사하였다. 이를 위하여 강섬유와 폴리에틸렌, 폴리비닐알코올, 현무암섬유 조합에 따라 4가지 초고성능 콘크리트 배합을 결정하였고, 인장거동을 평가하기 위하여 직접인장 실험을 수행하였다. 또한 마이크로섬유가 제조과정에서 의도하지 않은 과도한 기포를 생성하는지를 확인하기 위하여 밀도실험을 수행하였다. 실험결과 인장강도가 높은 폴리에틸렌섬유는 초고성능 콘크리트의 인장거동을 향상시키는데 효과적임을 확인하였고, 현무암섬유는 초고성능 콘크리트의 균열강도 및 인장강도를 증가시키는데 효과적임을 확인하였다. 또한 마이크로섬유가 의도하지 않은 기포를 생성하지 않는다는 것도 확인하였다.

Keywords

References

  1. Association Francaise de Genie Civil (2002), Ultra High Performance Fibre-Reinforced Concretes-Interim Recommendations, Paris, France.
  2. Baek, H. J., Choi, J. I., Kim, H. U., Jang, Y. H., and Lee, B. Y. (2014), Pullout Behavior of Basalt Fibers, Proceedings of the Korea Concrete Institute, 26(1), 363-364.
  3. Banthia, N. Majdzadeh, F. Wu, J. Bindiganavile, V., (2014), Fiber Synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in Flexure and Direct Shear, Cement & Concrete Composites, 48, 91-97. https://doi.org/10.1016/j.cemconcomp.2013.10.018
  4. Buitelaar, P. (2004), Heavy Reinforced Ultra High Performance Concrete, Proceedings of the International Symposium on Ultra High Performance Concrete, Ed., Schmidt, M., Fehling, E., and Geisenhansluke, C., Kassel University Press, Kassel, Germany, 25-35.
  5. Japan Society of Civil Engineers (2008), Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series.
  6. Kang, S. H., and Hong, S. G. (2014), Performance of Fresh and Hardened Ultra High Performanc Concrete without heat Treatment, Journal of the Korea Concrete Institute, 26(1), 23-34. https://doi.org/10.4334/JKCI.2014.26.1.023
  7. Kim, Y. Y. (2007), Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers, Journal of the Korea Society for Composite Materials, 21(2), 21-26.
  8. Koh, K. T., Park, J. J. Ryu, G. S., and Kim, S. W. (2013), State-of-the-Art on Development of Ultra-High Performance Concrete, The Magazine of the Korean Society of Civil Engineers, 61(2), 51-60.
  9. Koh, K. T, Ryu, G. S., Park, J. J., An, K. H., Kim, S. W., and Kang, S. T. (2013), Effects of the Composing Materials on the Rheological and Mechanical Properties of Ultra-High Performance Concrte (UHPC), RILEM-fib-AFGC International Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC2103, Marseille, France, 749-756.
  10. Korea Concrete Institute (2012), Design Guidelines of Ultra High Performance Concrete (K-UHPC).
  11. Korea Institute of Construction Technology (2012), Development of Advanced Technology of Toughness in Ultra High Performance Concrete for Hybrid Cable Stayed Bridge.
  12. Korea Institute of Construction Technology (2014), Provisional Specifications for the Fabrication and Quality Control Guidelines of SUPER Concrete.
  13. Lawler, J. S., Wilhelm, T., Zampini, D., and Shah, S. P. (2003), Fracture Processes in Hybrid Fiber-Reinforced Mortar, Materials and Structures, 36, 197-208. https://doi.org/10.1617/13874
  14. Lee, B. Y., Bang, J. W., and Kim, Y. Y. (2013), Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(3), 118-125. https://doi.org/10.11112/jksmi.2013.17.3.118
  15. Li, V. C. (2012), Tailoring ECC for Special Attributes: A Review, International Journal of Concrete Structures and Materials, 6(3), 135-144. https://doi.org/10.1007/s40069-012-0018-8
  16. Li, V. C., Wang, S. and Wu, C. (2001), Tensile Strainhardening Behavior of PVA-ECC, ACI Materials Journal, 98(6), 483-492.
  17. Naaman, A. E. and Wille, K. (2012), The Path to Ultra-High Performance Fiber Reinforced Concrete (UHP-FRC): Five Decades of Progress, Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Ed., Schmidt, M., Fehling, E., Glotzbach, C., Frohlich, S., and Piotrowski, S., Kassel University Press, Kassel, Germany, 3-15.
  18. Rossi, P. (2008), Ultra High-Performance Concrete, Concrete International, 30(2), 31-34.
  19. Russel, H. G. and Graybeal, B. A. (2013), Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community, Federal Highway Administration, McLean.

Cited by

  1. Mechanical Property of Fiber Reinforced Concrete according to the Change of Curing Method vol.20, pp.2, 2016, https://doi.org/10.11112/jksmi.2016.20.2.067
  2. 변형 속도에 따른 후크형 강섬유 및 폴리아미드섬유보강 시멘트 복합체의 압축 및 인장강도 특성 vol.21, pp.3, 2015, https://doi.org/10.11112/jksmi.2017.21.3.076
  3. 후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동 vol.21, pp.6, 2015, https://doi.org/10.11112/jksmi.2017.21.6.098
  4. 이산화티탄 광촉매의 효율적 적용을 위한 LEFC 블록 제작에 관한 연구 vol.23, pp.6, 2015, https://doi.org/10.11112/jksmi.2019.23.6.120
  5. 후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성 vol.25, pp.3, 2015, https://doi.org/10.11112/jksmi.2021.25.3.31