• Title/Summary/Keyword: 체내 선량분포

Search Result 19, Processing Time 0.024 seconds

Evaluation of Fabricated Semiconductor Sensor for Verification of γ-ray Distribution in Brachytherapy (근접치료용 방사성 동위원소의 선량분포 확인을 위한 디지털 반도체 센서의 제작 및 평가)

  • Park, Jeong-Eun;Kim, Kyo-Tae;Choi, Won-Hoon;Lee, Ho;Cho, Sam-Joo;Ahn, So-Hyun;Kim, Jin-Young;Song, Yong-Keun;Kim, Keum-bae;Huh, Hyun-Do;Park, Sung-Kwang
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • In radiation therapy fields, a brachytherapy is a treatment that kills lesion of cells by inserting a radioisotope that keeps emitting radiation into the body. We currently verify the consistency of radiation treatment plan and dose distribution through film/screen system (F/S system), provide therapy after checking dose. When we check dose distribution, F/S systems have radiation signal distortion because there is low resolution by penumbra depending on the condition of film developed. In this study, We fabricated a $HgI_2$ Semiconductor radiation sensor for base study in order that we verify the real dose distribution weather it's same as plans or not in brachytherapy. Also, we attempt to evaluate the feasibility of QA system by utilizing and evaluating the sensor to brachytherapy source. As shown in the result of detected signal with various source-to-detector distance (SDD), we quantitatively verified the real range of treatment which is also equivalent to treatment plans because only the low signal estimated as scatters was measured beyond the range of treatment. And the result of experiment that we access reproducibility on the same condition of ${\gamma}$-ray, we have made sure that the CV (coefficient of variation) is within 1.5 percent so we consider that the $HgI_2$ sensor is available at QA of brachytherapy based on the result.

A Study on the Application of PbI2 Dosimetry for QA in the Electron Beam Therapy (전자선 치료의 선량 측정 QA를 위한 PbI2 선량계 적용 연구)

  • Yang, Seungwoo;Han, Moojae;Jung, Jaehoon;Choi, Yunseon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.517-522
    • /
    • 2020
  • Electron beam have many factors that affect dose distribution, so even if identical settings are used, they should be identified and used for radiation treatment, and the effects on the structures in the body are sensitive, making it difficult to investigate uniform dose distribution on tumors. In this study, a dosimeter was produced using PbI2 which is a photoelectric material, and electrical characteristics were analyzed for 6, 9, and 12 MeV electronics in linear accelerators. The reproducibility test results showed that RSD were 1.1215%, 1.0160%, and 0.05137% respectively at 6, 9, and 12 MeV energies, indicating that the output signals were stable. The linearity evaluation results showed that the R2 values of the reliability indicator for straight line trend lines were 0.9999, 0.9999, and 0.9994, respectively, at 6, 9, and 12 MeV, to confirm that the output signal was proportional to PbI2 as dose increased. The PbI2 dosimeter in this study is judged to be highly applicable to electromagnet measurement and is thought to be able to be used as a basic study of electron detector through photoelectric material.

Detection and Measurement of Nuclear Medicine Workers' Internal Radioactive Contamination (핵의학과 종사자의 방사성동위원소 체내오염 측정)

  • Jeong, Gyu-Hwan;Kim, Yong-Jae;Jang, Jeong-Chan;Lee, Jai-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • Purpose: We tested a sample of nuclear medicine workers at Korean healthcare institutions for internal contamination with radioactive isotopes, measuring concentrations and evaluating doses of individual exposure. Materials and Methods: The detection and measurement was performed on urine samples collected from 25 nuclear medicine workers at three large hospitals located in Seoul. Urine samples were collected once a week, 100~200 mL samples were gathered up to 6~10 times weekly. A high-purity germanium detector was used to measure gamma radiations in urine samples for the presence of radioactive isotopes. Based on the detection results, we estimated the amounts of intake and committed effective doses using IMBA software. In cases where committed effective doses could not be adequately evaluated with IMBA software, we estimated individual committed effective doses for radionuclides with a very short half life such as $^{99m}Tc$ and $^{123}I$, using the methods recommended by International Atomic Energy Agency. Results: Radionuclides detected through the analysis of urine samples included $^{99m}Tc$, $^{123}I$, $^{131}I$ and $^{201}Tl$, as well as $^{18}F$, a nuclide used in Positron Emission Tomography examinations. The committed effective doses, calculated based on the radionuclide concentrations in urine samples, ranged from 0 to 5 mSv, but were, in the majority of cases, less than 1 mSv. The committed effective dose exceeded 1 mSv in three of the samples, and all three were workers directly handling radioactive sources. No nurses were found to have a committed effective dose in excess of 1 mSv. Conclusions: To improve the accuracy of results, it may be necessary to conduct a long-term study, performed over a time span wide enough to allow the clear determination of the influence of seasonal factors. A larger sample should also help increase the reliability of results. However, as most Korean nuclear medicine workers are currently not necessary to monitored routinely for internal contamination with radionuclides. Notwithstanding, a continuous effort is recommended to reduce any unnecessary exposure to radioactive substances, even if in inconsequential amounts, by regularly surveying workplace environments and frequently monitoring atmospheric concentrations of radionuclides.

  • PDF

Head & neck 환자의 방사선치료 시 tongue displacer 사용의 유용성 평가

  • 박용철;박영환;김경태;최지민
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • I. 목적 : 방사선 치료 시 최적화된 체내 선량분포를 얻는 것은 정상조직의 장애를 줄이고 종양선량을 높여 치료 효율을 극대화하는데 매우 중요하다. 본원에서는 병변 부위가 한쪽으로 치우친 head&neck 환자 치료 시 정상조직(tongue)을 보호하기 위해 tongue displacer를 만들어 사용한다. 이에 본 저자는 tongue displacer사용의 치료 유용성을 평가 하고자 한다. II. 대상 및 방법 : head & neck 치료 환자 중 병변 부위가 인체의 정중선(MSP)을 기준으로 한쪽으로 치우친 환자를 대상으로 하였다. 사용된 실험재료로는 C-T (high speed advantage, GE,US), RTP System (3D RTP system, prowess, US), 치과용 인상제 주입기(caulk system, quixx, japan), tongue displacer 등이 있다. 실험 방법은 모의 치료나 planning C-T를 시행하기 전에 치료 환자에게 사용할 개인용 tongue displacer를 치과용 인상제로 자체 제작하였다. 제작 후 모의 치료를 시행하고 3D plan을 하기 위해 planning C-T를 촬영하게 되는데 이때 tongue displacer사용 유. 무에 따라 각각 촬영을 하였다. 촬영된 두 가지의 CT영상을 prowess를 이용하여 3D plan을 하게 되는데 이때의 plan parameter나 beam direction등 plan에서의 모든 조건은 모두 동일시하고 선량 분포 및 DVH(dose volume histogram)값을 비교하였다. III. 결과 : tongue displace의 사용 유. 무에 따른 3D plan상의 DVH 비교 결과 tumor volume 주위의 다른 organ들은 모두 비슷한 양상의 DVH를 보였으나 tongue에 있어서 큰 변화를 보였다. tongue displacer를 사용 시, 미 사용시 보다 tongue의 위치를 변화시켜 치료 부위 외의 tongue에 받는 방사선 피폭 면적을 줄일 수 있었고 그 결과 DVH상의 $50\%$ volume이 $16\%$ 정도 줄어드는 것이 확인되었다. IV. 결론 : tongue에 방사선을 조사하면 방사선 부작용으로 mucositis, ulcer, hemorrhage등의 pain(동통)이 수반되므로 치료환자의 음식물 섭취불량으로 체증감소 등 전신 쇠약으로 이어질 수 있다. head & neck 환자 중에서 병소 위치가 한쪽으로 치우쳐서 있을 경우 인상제를 이용하여 tongue displacer를 만들어서 사용하면 tongue 의 위치를 변화시켜 방사선 조사 야에서 제외시켜준다. 그러므로 방사선 치료 시 tongue의 부작용을 최소화 할 수 있고 환자의 방사선 치료 만족도를 높일 수 있다고 사료된다.

  • PDF

Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron (고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動))

  • Chu, S.S.;Lee, D.H.;Choi, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

Radiation Shielding Analysis on The Spent Fuel Storage Facility for the Extended Fuel Cycle (장주기(長週期) 핵연료(核燃料) 저장시설(貯藏施設)에서의 방사선차폐해석(放射線遮蔽解析))

  • Lee, Tae-Young;Ha, Chung-Woo;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.90-96
    • /
    • 1984
  • Estimated dose rates in spent fuel pool storage with the extended fuel cycle core management were reviewed and compared with design limit after calculation with the aid of DLC-23/CASK(22 n, 18 g) nuclear data and ANISN code. Radioactivity and gamma spectrum within spent fuel assemblies were calculated with ORIGEN code by extended fuel cycle model. In the calculation of dose rate, the fuel pool geometry was assumed to be infinite slab. Also, composition materials and radiation source within assemblies which are being stored in pool storage were assumed to be uniformly distributed throughout all the assemblies. As a result of culculation of dose rate from stored assemblies and waterborne radionuclides in pool water, the calculated dose rates appear to be lower than design basis limit under normal condition as well as abnormal condition.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Comparison of Measured and Predicted $^3H$ Concentrations in Environmental Media around the Wolsung Site for the Validation of INDAC Code (주면피폭선량 평가코드(INDAC)의 검증을 위한 월성원전 주면 삼중수소 농도 실측치와 예측치의 비교 평가)

  • Jang, Si-Young;Kim, Chang-Kyu;Rho, Byung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2000
  • The predicted results of INDAC code were compared with measured $^3H$ concentrations in air and pine-needle around the Wolsung site. The optimal sets of input data to INDAC were in addition selected by comparing the measured values with the predicted values of INDAC based on various conditions such as the release modes of effluents into the environment, the classification of wind classes, and the consideration of terrain. The predicted $^3H$ concentrations in air and pine-needle were shown to have good agreement with measured values, although there are some limitations such as uncertainties in measured values, complex topology around the site, and the land-sea breeze effects. The assumption on the $^3H$ behavior in vegetables or plants that the ratio of $^3H$ concentration in plant water to $^3H$ concentration in atmospheric water is 1/2 was shown to be conservative in terms of the audit calculation performed by the regulator. It was also found that data sets based on mixed mode and no terrain data were not appropriate for the audit calculation ensuring the compliance with regulations. Thus, if the mixed mode is considered as the release mode of effluents into the environment, meteorological data measured at 58 m height and terrain data should be used to evaluate the atmospheric dispersion factor.

  • PDF

The Effect of Partially Used High Energy Photon on Intensity-modulated Radiation Therapy Plan for Head and Neck Cancer (두경부암 세기변조방사선치료 계획 시 부분적 고에너지 광자선 사용에 따른 치료계획 평가)

  • Chang, Nam Joon;Seok, Jin Yong;Won, Hui Su;Hong, Joo Wan;Choi, Ji Hun;Park, Jin Hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: A selection of proper energy in treatment planning is very important because of having different dose distribution in body as photon energy. In generally, the low energy photon has been used in intensity-modulated radiation therapy (IMRT) for head and neck (H&N) cancer. The aim of this study was to evaluate the effect of partially used high energy photon at posterior oblique fields on IMRT plan for H&N cancer. Materials and Methods: The study was carried out on 10 patients (nasopharyngeal cancer 5, tonsilar cancer 5) treated with IMRT in Seoul National University Bundang Hospital. CT images were acquired 3 mm of thickness in the same condition and the treatment plan was performed by Eclipse (Ver.7.1, Varian, Palo Alto, USA). Two plans were generated under same planing objectives, dose volume constraints, and eight fields setting: (1) The low energy plan (LEP) created using 6 MV beam alone, (2) the partially used high energy plan (PHEP) created partially using 15 MV beam at two posterior oblique fields with deeper penetration depths, while 6 MV beam was used at the rest of fields. The plans for LEP and PHEP were compared in terms of coverage, conformity index (CI) and homogeneity index (HI) for planning target volume (PTV). For organs at risk (OARs), $D_{mean}$ and $D_{50%}$ were analyzed on both parotid glands and $D_{max}$, $D_{1%}$ for spinal cord were analyzed. Integral dose (ID) and total monitor unit (MU) were compared as addition parameters. For the comparing dose to normal tissue of posterior neck, the posterior-normal tissue volume (P-NTV) was set on the patients respectively. The $D_{mean}$, $V_{20Gy}$ and $V_{25Gy}$ for P-NTV were evaluated by using dose volume histogram (DVH). Results: The dose distributions were similar with regard to coverage, CI and HI for PTV between the LEP and PHEP. No evident difference was observed in the spinal cord. However, the $D_{mean}$, $D_{50%}$ for both parotid gland were slightly reduced by 0.6%, 0.7% in PHEP. The ID was reduced by 1.1% in PHEP, and total MU for PHEP was 1.8% lower than that for LEP. In the P-NTV, the $D_{mean}$, $V_{20Gy}$ and $V_{25Gy}$ of the PHEP were 1.6%, 1.8% and 2.9% lower than those of LEP. Conclusion: Dose to some OARs and a normal tissue, total monitor unit were reduced in IMRT plan with partially used high energy photon. Although these reduction are unclear how have a clinical benefit to patient, application of the partially used high energy photon could improve the overall plan quality of IMRT for head and neck cancer.

  • PDF