• Title/Summary/Keyword: 철 합금

Search Result 385, Processing Time 0.026 seconds

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Concentration of elemental ions released from non-precious dental casting alloys (치과주조용 비귀금속 합금의 금속 용출 수준)

  • Sakong, Joon;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Purpose: This study was to assess the extents of the release of metals from the non-precious alloys used for dental casting by measuring the differences in the extents of the release of metals by types of alloys, pH level and elapsed time. Methods: Uniform-sized specimens(10 each) were prepared according to the Medical Device Standard of the Korea Food and Drug Administration(2010) and International Standard Organization(ISO22674, 2006), using four types of alloys(one type of Ni-Cr and one type of Co-Cr used for fixed prosthesis, and one type of Ni-Cr and one type of Co-Cr used for removable prosthesis). A total of 12 metal-release tests were performed at one-day, three-day, and two-week intervals, for up to 20 weeks. The metal ions were quantified using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: The results showed that the extent of corrosion was higher in the ascending order of Jdium-$100^{(R)}$, Bellabond-$Plus^{(R)}$, Starloy-$C^{(R)}$, and Biosil-$F^{(R)}$. The lower the pH and the longer the elapsed time were, the greater the increase in metal corrosion. At pH 2.4, the release of Ni from Jdium-$100^{(R)}$, a Ni-Cr alloy, was up to 15 times greater than the release of Co from the Co-Cr alloy from two weeks over time, indicating that the Ni-Cr alloy is more susceptible to corrosion than the Co-Cr alloy. Conclusion: It is recommended that Co-Cr alloy, which is highly resistant to corrosion, be used for making dental prosthesis with a non-precious alloy for dental casting, and that non-precious alloy prosthesis be designed in such a way as to minimize the area of its oral exposure. For patients with non-precious alloy prostheses, a test of the presence or absence of periodontal tissue inflammation or allergic reaction around the prosthesis should be performed via regular examination, and education on the good management of the prosthesis is needed.

Design and Development of SMH Actuator System (SMH 액추에이터 시스템 설계 및 개발)

  • Kwon T.K.;Choi. K.H.;Pang. D.Y.;Lee. S.C.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.551-555
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of SMH actuator using a peltier module. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloy as a power source, Peltier elements as a heat source and a cylinder with metal bellows a functioning part has been developed. The SMH actuator is characterized by its small size, low weight, noiseless operation and a compliance similar to that of the human body. A new special metal hydride(SMH) actuator that uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing ally. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times as their own volume. To improve the thermal conductivity of the hydrogen-absorbing alloy, an electro-less copper plating has been carried out. The effects of the electro-less copper plating and the dynamic characteristics of the SMH actuator have been studied. The hydrogen equilibrium pressure increases and hydrogen is desorbed by heating the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. Therefor, the SMH actuator has the characteristic of being light and easy to use and so is suitable for use in medical and rehabilitation applications.

  • PDF

The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation (AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향)

  • Ko, Byung-Chul;Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys (알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향)

  • Min, K.H.;Seo, J.M.;Koo, H.S.;Vishara, R.J.;Tak, S.H.;Lee, I.C.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

Mechanical Properties of Joints according to Welding Methods and Sensitivity Analysis of FSW's Welding Variables for A6005 Extruded Alloy of Rolling Stock (철도차량용 A6005 압출재의 용접방법에 따른 접합부 기계적 특성 및FSW 용접 변수의 민감도 분석)

  • Kim, Weon-Kyong;Won, Si-Tae;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Recently, extruded aluminium-alloy panels have been used in the car bodies in order to meet the needs for the speed-up and light-weight of the railway vehicles. Most of the car bodies were jointed by arc weldings, like GMAW (GasMetal Arc Welding) and GTAW (Gas Tungsten Arc Welding), but these weldings became fairly worse the mechanical properties of the junction than the base metal. Nowadays, FSW (Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. In this study, the mechanical properties of the joints in both FSW and GMAW for A6005 extruded aluminium-alloy sheets have discussed. In addition, the relationships between the welding conditions and the mechanical properties for the joint of FSW have analyzed through the sensitivity analysis. It can be concluded that the mechanical properties for the joint of FSW are better than those of GMAW and the welding speed is the most sensible welding condition in the process of FSW.

대기압 플라즈마를 이용한 탄소섬유 안정화 공정

  • Lee, Heon-Su;Kim, So-Yeong;Jo, Han-Ik;Lee, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.137-137
    • /
    • 2013
  • 지속 가능한 발전을 위해, 한정된 자원인 석유의 고갈을 막기 위해 석유를 수송에너지로 주로 사용하는 자동차에서 바이오 디젤이나 연료전지, 전기자동차 등 다양한 대안이 제시되고 있다. 그러나 식량 가격 상승, 낮은 안정성, 인프라 확충 등의 문제의 해결이 필요할 뿐만 아니라, 석유의 소비를 감소시키는 대신, 지구에서 소비할 수 있는 다른 형태의 에너지를 소모한다는 측면에서 근본적인 에너지 문제의 해결책의 모색이 필요하다. 19세기 후반, 백열전구의 필라멘트 용도로 사용되기 시작한 탄소 섬유는, 철에 비해 5배 가볍고 강도는 10배가 높으며 내열성이 뛰어난 소재로서, 복합소재의 형태로 제조되어 비행기, 우주선, 풍력 발전 블레이드 등 다양한 산업 분야에서 소재의 장점을 발휘하는 재료로 적용 분야가 확대되고 있다. 특히 비행기 분야에서는 최근 비행기 몸체 구조에 기존 알루미늄 합금을 탄소섬유복합재가 대체하고 있으며, 최근에는 부피 기준 50% 가량까지 탄소섬유 복합재를 사용하여 비행기를 제작하고 있다. 이에 따라 기존에 비해 20% 가량 연료 소모가 감소하여, 비행기 한 대 당 연간 2,700톤의 이산화탄소 배출을 저감하고 있다. 이와 같이 탄소섬유 복합재를 다양한 분야에 적용함으로써, 에너지 문제에 대한 보다 근본적인 접근이 가능하다. 그러나 탄소섬유 복합소재는 금속 등 기존 재료에 비해 높은 가격으로 상용 자동차 등 에너지 소비량이 많은 분야에 널리 적용되는데 한계가 존재한다. 이와 같이 높은 탄소섬유의 가격은, 원가의 50% 가량을 차지하는 PAN 원사 가격과 나머지 반절에 해당하는 안정화/탄화 공정 비용에서 기인하는 것으로, 미국의 ORNL (Oak Ridge National Laboratory), 한국의 KIST 복합소재연구소 등에서는 원사, 안정화 공정, 탄화 공정 등 다양한 측면에서 탄소섬유 복합재의 가격을 절감할 수 있는 방안을 연구 중이다. 미국 ORNL에서는 마이크로웨이브 플라즈마를 이용하여 기존에 열을 이용해 수행하던 탄화 공정 비용을 크게 절감하고 있으며, KIST에서는 대기압 플라즈마를 이용하여 기존에 열을 이용해 2시간 가량이 소요되는 안정화 공정을, 대기압 플라즈마를 이용하여 30분여로 단축된 시간에 수행하는 공정을 개발 중이다. 본 발표에서는 탄소섬유 복합재의 개요와, 탄소섬유 가격 절감 방안으로서의 플라즈마에 대해 논의하며 대기압 플라즈마의 다양한 응용에 대해 소개할 예정이다.

  • PDF

Effect of Heat Treatment on the Microstuctures and Mechanical Properties of TiC Dispersed Ni-base Alloy (TiC 분산된 니켈기 합금의 미세조직 및 기계적 특성에 미치는 열처리 영향)

  • Hong, Seong-Hyeon;Hwang, Keum-Chul;Rhee, Won-Hyuk;Chin, Eog-Yong
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2002
  • The microstructures and properties of TiC dispersed nickel-base alloy were studied in this work. The alloy prepared by powder metallurgical processing was solution treated, 1st-aged at $880^{\circ}C$ for 16 hours, and then 2nd-aged at $760^{\circ}C$ for 4 hours. Microstucture of sintered specimen showed that TiC particles are uniformly dispersed in Ni base alloy. In the specimen aged at $880^{\circ}C$ for 8 hours, the fine $\gammaNi_3$(Al,Ti) precipitates with round shape are observed and the very fine $\gammaNi_3$(Al,Ti) particles with round shape are precipitated in the specimen aged at $760^{\circ}C$ for 4 hours. The presence of ${\gamma}$precipitates in TiC/Ni base alloy increased the hardness and wear resistance of the specimen. The hardness and wear resistance of the Ni-base with TiC are higher than those of conventional Ni-base superalloy X-750 because of dispersion strengthening of TiC particles. The hardness, transverse rupture strength and resistance of the specimen 2nd-aged at $760^{\circ}C$ for 4 hours are higher than those of 1st-aged specimen due to ultrafine $\gammaNi_3$(Al,Ti) precipitates.

The Effect of Oxygen Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap (Zr기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 산소함량의 영향)

  • Kim, Sung-Gyoo;Lee, Byung-Chul;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.75-79
    • /
    • 2015
  • Commercial Zr-based amorphous alloy was recycled and oxygen was introduced during the recycling process. The oxygen content can have a great effect on the glass forming ability and the mechanical properties of the alloy. Therefore, it was closely examined. The initial oxygen content in the raw material was 1,244 ppm. It was increased to 3,789 ppm in the alloy after ten recycling processes. As the recycling processes were repeated, the oxygen content increased. Specifically, after four recycling processes, it increased sharply as compared to that after three recycling processes. After ten recycling processes, the glass transition temperature (Tg) increased from 613 K to 634 K and the crystallization temperature (Tx) increased from 696 K to 706 K. On the other hand, the super-cooled liquid region (${\Delta}T=Tx-Tg$) decreased slightly from 83 K to 72 K while the reduced glass transition temperature (Trg = Tg/Tm) was 0.63, remaining constant even when the oxygen content was increased. These results indicated that the increased oxygen content deteriorated the glass forming ability. The bending strength as determined in a three-point bending test showed a sharp decrease from 3,055 to 2,062 MPa as the oxygen content was increased from 1,244 ppm to 3,789 ppm; the extension was also decreased from 3.02 to 1.74 mm. These findings meant that the alloy became brittle.

Phase Transformation and Thermoelectric Properties of Fe0.92Mn0.08Si2 Prepared by Mechanical Alloying (기계적 합금화로 제조된 Fe0.92Mn0.08Si2의 상변화 및 열전 특성)

  • Kim, Young-Seob;Cho, Kyung-Won;Kim, Il-Ho;Ur, Soon-Chul;Lee, Young-Geun
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.292-296
    • /
    • 2003
  • In an attempt to enhance phase transformation and homogenization of Mn-doped $FeSi_2$, mechanical alloying of elemental powders was applied. Cold pressing and sintering in vacuum were carried out to produce a dense microstructure, and then isothermal annealing was employed to induce a phase transformation to the $\beta$-$FeSi_2$semiconductor. Phase transitions in this alloy system during the process were investigated by using XRD, EDS and SEM. As-milled powders after 100 h of milling were shown to be metastable state. As-sintered iron silicides consisted of untransformed mixture of $\alpha$-$Fe_2$$Si_{5}$and $\varepsilon$-FeSi phases. $\beta$-$FeSi_2$phase transformation was induced by subsequent isothermal annealing at $830^{\circ}C$, and near single phase of $\beta$-$FeSi_2$was obtained after 24 h of annealing. Thermoelectric properties in terms of Seebeck coefficient, and electrical conductivity were evaluated and correlated with phase transformation. Seebeck coefficient electrical resistivity and hardness increased with increasing annealing time due to $\beta$ phase transformation.