Mechanical Properties of Joints according to Welding Methods and Sensitivity Analysis of FSW's Welding Variables for A6005 Extruded Alloy of Rolling Stock

철도차량용 A6005 압출재의 용접방법에 따른 접합부 기계적 특성 및FSW 용접 변수의 민감도 분석

  • Received : 2009.07.13
  • Accepted : 2009.09.25
  • Published : 2010.04.26

Abstract

Recently, extruded aluminium-alloy panels have been used in the car bodies in order to meet the needs for the speed-up and light-weight of the railway vehicles. Most of the car bodies were jointed by arc weldings, like GMAW (GasMetal Arc Welding) and GTAW (Gas Tungsten Arc Welding), but these weldings became fairly worse the mechanical properties of the junction than the base metal. Nowadays, FSW (Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. In this study, the mechanical properties of the joints in both FSW and GMAW for A6005 extruded aluminium-alloy sheets have discussed. In addition, the relationships between the welding conditions and the mechanical properties for the joint of FSW have analyzed through the sensitivity analysis. It can be concluded that the mechanical properties for the joint of FSW are better than those of GMAW and the welding speed is the most sensible welding condition in the process of FSW.

최근에 철도의 고속화에 따라 차량의 경량화가 요구되기 때문에 알루미늄을 적용한 차량이 증가하고 있다. 알루미늄 차량의 차체는 대부분이 가스용접을 사용하였으나, 이 용접방법은 접합부의 기계적 성질이 모재에 비해 상당히 저하되는 경향이 있다. Hitachi, Bombardier 등의 철도 선진 제작사를 중심으로 가스용접에 비해 접합부의 기계적 성질이 우수한 마찰교반용접을 알루미늄 차체의 용접에 적용하고 있다. 본 논문에서는 철도차량에 사용되고 있는 A6005의 알루미늄 합금 압출재에 대하여 기존의 가스 용접방법인 GMAW와 새로운 용접방법인 마찰교반용접(FSW)을 적용한 경우에 접합부의 기계적 성질을 비교 분석하여 FSW가 GMAW에 비해 기계적 성질이 우수하다는 것을 확인하였다. 또한, FSW를 적용한 경우에 대해 용접 변수가 접합부의 기계적 성질에 미치는 영향을 민감도 분석을 통해 확인한 결과, 공구의 이송속도가 가장 큰 영향을 주는 용접 변수임을 알 수 있었다.

Keywords

References

  1. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling et al. (1998) Properties of friction stir welded 7075 T651 aluminum, Metallurgical and Materials A, 29, pp. 1955-1964. https://doi.org/10.1007/s11661-998-0021-5
  2. W. B. Lee, Y. M. Yeon, and S. B. Jung (2003) The improvement of mechanical properties of friction stir welded A356 Al alloy, Materials Science and Engineering A, 355, pp. 154-159. https://doi.org/10.1016/S0921-5093(03)00053-4
  3. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch et al. (1991) G. B. Patent Application No. 9125978.8.
  4. R. S. Mishra and Z. Y. Ma (2005) Friction stir welding and processing, Materials Science and Engineering, R, 50, pp. 1-78. https://doi.org/10.1016/j.mser.2005.07.001
  5. R. Nandan, T. Debroy, and H. K. D. H. Bhadeshia (2008) Recent advances in friction stir welding process, Weldment Structure and Properties, Progress in Materials Science, 53, pp. 980-1023. https://doi.org/10.1016/j.pmatsci.2008.05.001
  6. N. T. Kumbhar and K. Bhanumurthy (2008) Friction stir welding of Al 6061 alloy, Asian J. Exp. Sci., 22(2), pp. 63-74.
  7. H. S. Han (2003) Simulation based parametric study of the current collection system of high speed trains, Journal of the Korean Society for Railway, 6(4), pp. 138-144.
  8. R. H. Myers (1971) Response Surface Methodology, Allyn & Bacon, Boston, Inc.
  9. W. M. Thomas and E. D. Nicholas (1997) Friction Stir Welding for the Transportation Industries, Materials and Design, 18(4/6), pp. 269-273. https://doi.org/10.1016/S0261-3069(97)00062-9
  10. V. Balasubramanian (2008) Relationship between Base Metal Properties and Friction Stir Welding Process Parameters, Materials Science and Engineering, A, 480, pp. 397-403. https://doi.org/10.1016/j.msea.2007.07.048
  11. S. P. Jung, K. J. Jun, T. W. Park, and I. C. Ahn (2008) An optimum design of a gas circuit breaker using design of experiments, Mechanics Based Design of Structures and Machines, 36, pp. 346-363. https://doi.org/10.1080/15397730802405895