• Title/Summary/Keyword: 철근콘크리트 보 및 기둥

Search Result 133, Processing Time 0.027 seconds

Seismic Evaluation of Beam-Column Joint Specimens of RC Special Moment Frames (철근콘크리트 특수모멘트골조의 보-기둥 접합부 실험체의 내진성능평가)

  • Lee, Ki-Hak;Seok, Keun-Yung;Jung, Chan-Woo;Shin, Young-Shik;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete special moment frames. All of the test specimens were classified as special moment frame (SMF), based on the design and detailing requirements of the ACI 318-02 provisions. The acceptance criteria, originally defined for steel moment frame connections in the 1997 edition of the AISC Seismic provisions, were used to evaluate the beam-column joints of the reinforced concrete moment frames. A total of 39 test specimens were examined in detail. Most of the joints that satisfy the design requirements for special moment frame structures were found to be ductile up to a plastic rotation of 3% without any major degradation in strength. This is mainly due to the stringent ACI 318-02 requirements for special moment frame joints. The presence of transverse beams increases confinement and shear resistance of joints, which results in better performance than for joints without transverse beams. All of the SMF connections that satisfy the ACI 318-02 limitations on joint shear stress turned out to meet the acceptance criteria.

  • PDF

Evaluation of Reinforced Concrete Beam's Inelastic Behavior Characteristics using Beam-column Fiber Finite Element considering Shear Deformation Effect (전단변형 효과가 고려된 보-기둥 섬유유한요소를 이용한 철근콘크리트 보의 비탄성 거동특성 평가)

  • Cheon, Ju-Hyun;Hwang, Cheol-Seong;Park, Kwang-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.130-137
    • /
    • 2017
  • The purpose of this study is to provide a reasonable analytical method for the reinforced concrete beams which shows failure mode of shear and flexure-shear by proposing a modified formulation to consider the effect of shear deformation on the beam-column fiber element based on the flexibility method and a new constitutive law of inelastic shear response history for the section. A total of 6 specimens of reinforced concrete beams which is designed to cause shear failure before yielding longitudinal reinforcement to investigate the influence of the main experimental variables on the shear behavior characteristics and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the newly modified constitutive equation by the authors. The failure mode and the overall behavior characteristics until fracture are predicted appropriately for all specimens and the results are expected to be useful enough for the 3 - D analysis to carry out reliable results of large-scale and complicated structures in the future.

Shear Reinforcement for Flat Plate-Column Connections Using Lattice Bars (래티스 철근을 이용한 무량판-기둥 접합부의 전단보강)

  • Ahn Kyung-Soo;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.191-200
    • /
    • 2005
  • Flat plate-column connections are susceptible to brittle punching shear failure, which may result in collapse of the overall structure. In the present study, a new shear reinforcement for the plate-column connection, the lattice shear reinforcement was developed. Experimental study for the lattice shear reinforcement was performed. Shear strength and ductility of the specimens reinforced with the lattice bars were compared with those of unreinforced specimens. The test results showed that the strength and ductility of the specimens with the lattice shear reinforcement were improved by 1.37 and 9.16 times those of the unreinforced specimens, respectively. These results indicates that the lattice shear reinforcement is superior in ductility to the shear stud-rail which is popular in U.S. Based on the test results, the design method for the lattice shear reinforcement was developed.

Slab Effect on Inelastic Behaviors of High Strength RC Beam-Column Joints (고강도 RC 보-기둥 접합부의 비탄성 거동에 대한 슬래브의 영향)

  • 장극관;김윤일;오영훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.167-177
    • /
    • 1997
  • In thtx design of ductile moment -1csist1ng frnmcls (DMRFs) f'ollow~ng the. stlong columnweakbeam design philosophy, it is desirable that the joint and column remain essentiallyelastic in order to insure proper energy dissipation and lateral stability of the structure.Thv joint has been identifid as the "weak link: in DMRFs because any stiffness orstrength deterioration in this region can lead to substantial drifts and the possibility ofcollapse due to t'-delta effects. h3oreove1.. the tngintw is faced with the difficult task ofdetailing an element whose size is determined by theframing members, but \vhich mustresist a set of loads very different from those used in the design of the beams and columns.Four 3 -scale beam-column-slab joint assemblies were designed according to existing cod\ulcornerrequirements of' ACI 318-89. representing perimeter joints of DMRFs with reinforced highstrength concrete. The influence on aseismic behavior of beam-column joints due tomonolithic slab, has been investigated.lab, has been investigated.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Genetic Algorithm Based Optimal Structural Design Method for Cost and CO2 Emissions of Reinforced Concrete Frames (철근콘크리트 모멘트골조의 비용 및 이산화탄소 배출량을 고려한 유전자알고리즘 기반 구조최적화기법)

  • Lee, Min-Seok;Hong, Kappyo;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • In this study, the genetic algorithm based optimal structural design method is proposed. The objective functions are to minimize the cost and $CO_2$ emissions, simultaneously. The cost and $CO_2$ emissions are calculated based on the cross-sectional dimensions, length, material strength, and reinforcement ratio of beam and column members. Thus, the cost and $CO_2$ emissions are evaluated by using the amounts of concrete and reinforcement used to construct a building. In this study, the cost and $CO_2$ emissions calculated at the phases of material transportation, construction, and building operation are excluded. The constraint conditions on the strength of beam and column members and the inter-story drift ratio are considered. The linear static analysis by using OpenSees is automatically conducted in the proposed method. The genetic algorithm is employed to solve the formulated problem. The proposed method is validated by applying it to the 4-story reinforced concrete moment frame example.

A Case Study on Partial Explosive Demolition of a Large-Section Turbine Foundation Structure (대단면 터빈 기초 구조물의 부분발파해체 시공사례)

  • Park, Hoon;Suk, Chul-Gi;Nam, Sung-Woo;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • The number of industrial structures that must be demolished due to functional and structural deterioration has been increased. There is an increasing application of explosive demolition or explosive demolition combined with mechanical demolition to minimize temporal and spatial environmental hazardous factors created during the process of demolition. In this case study, to demolish the turbine foundation structure, which is a large-section reinforced concrete structure, the parital explosive demolition thchnique was conducted. As a result of the partial explosive demolition, the overall crushing of the blasting sections of beam-column joints structure with haunched beams and second-floor columns about the turbine foundation was satifactory, and the explosive demolition was completed without causing any damage to surrounding facilities.

Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections (복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.345-354
    • /
    • 2016
  • In the present study, hybrid moment connections of welding and bar reinforcement for composite beam-column connections were proposed. Concrete-filled octagonal tube and U-section were used for the column and beam, respectively. In the beam-column connection, the top flange and web of the beam U-section were connected to the column plate by welding. However, to reduce stress concentration at the weld joints, the bottom flange of the beam was not welded to the column plate. Instead, to transfer the tension force of the beam flange, reinforcing bars passing through the column plate were used. Four exterior connections with conventional welded and hybrid moment connections were tested under cyclic loading and their cyclic behaviors were investigated. The test results showed that the hybrid moment connections successfully transferred the beam moment to the column. The strength and ductility of the hybrid moment connections were comparable to the conventional welded moment connection with exterior diaphragm; however, the connection performance was significantly affected by the details of the hybrid moment connection.

Ductility Evaluation of Circular Hollow Reinforced Concrete Columns with Internal Steel Tube (강관 보강 중공 R.C 기둥의 연성 평가 해석)

  • Han, Seung Ryong;Lim, Nam Hyoung;Kang, Young Jong;Lee, Gyu Sei
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In locations where the cost of concrete is relatively high or in situations where the weight of concrete members has to be kept to a minimum, it may be more economical to use hollow reinforced concrete vertic al members. Hollow reinforced concrete colun-ms with a low axial load, a moderate longitudinal steel percentage and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. Hollow reinforced concrete columns with a high axial load, a high longitudinal steel percentage, and a thin wall were found, however, to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner through the disintegration of the concrete in the compression zone. A design recommendation and example through the moment-curvature analysis program for curvature ductility are herein presented. A theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted, providing that the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed foi members with circular sections.