• Title/Summary/Keyword: 철골접합

Search Result 220, Processing Time 0.025 seconds

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Force Transfer Mechanism of Seismic Steel Moment Connections (리브로 보강된 내진 철골 모멘트 접합부의 웅력전달 메커니즘)

  • Lee, Chol-Ho;Lee, Jae-Kwang;Kwon, Keun-Tae
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.269-277
    • /
    • 2001
  • 본 연구에서는 리브로 보강된 내진 철골 모멘트 접합부의 응력전달 메커니즘을 검토하였다. 리브보강 접합부의 응력전달 메커니즘은 고전 휨이론에 의한 예측과 전혀 다르다. 일반적으로 구조 기술자가 리브를 사용할 경우 단면이차모멘트의 증가에 따른 휨응력의 감소효과를 기대하는 것이 보통이다. 그러나 리브는 구조기술자들이 통상 가정하는 휨응력 전달요소라기 보다는 리브 구배 방향의 스트럿 요소로 기능하여 휨응력 외에도 전달응력을 전달한다. 리브를 스트럿 요소로 파악할 때 응력전달 메커니즘을 올바로 파악할 수 있으며 이를 기초로 합리적 설계법의 정립이 가능하다.

  • PDF

A Study about Damage of Steel Beam to SRC Column Connection in a New Extension Building (증축된 건축물의 SRC 기둥과 철골보 접합부 손상에 관한 연구)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.503-504
    • /
    • 2009
  • It is increased the necessity of the examination for safety of Steel Beam to SRC Column connection part in a new extension building. This study is presented the examination and cause analysis about damage of Steel Beam to SRC Column connection. so it is prevented collapse and extended use duration in building.

  • PDF

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

Seismic Performance of Beam-to-column Weak-axis Moment Connection of Small-size Steel Structure (소규모 철골조 보-기둥 약축 모멘트 접합부의 내진성능)

  • Lim, Woo-Young;You, Young-Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.169-180
    • /
    • 2017
  • Cyclic loading tests for beam-to-column weak-axis connections were performed to investigate the seismic performance. In this study, the connections were developed to improve the constructability on the basis of investigation for existing small-size steel structures. The primary test parameter is the number of high-tension bolts which are used to connect steel beam and column using exterior and interior flange plates. Test results showed that the number of bolts had a significant effect on the cyclic behavior of beam-column weak-axis connections. From the analysis of test results, it is concluded that more than four bolts in the connections can satisfy the requirements of semi-rigid connection presented in current design codes. All of specimens showed the bearing failure around bolt holes and fracture at the beam flange. However, when the web height and the flange width is relatively small, the number of the bolts used in the connections might be limited. Thus, the additional research in this area is needed.

A Study on Economic Evaluation Method of Steel Erection Work using by Self-supported Steel Joint (자립형 철골 접합부를 이용한 철골설치 방식의 경제성 평가에 관한 연구)

  • Kim, Changki;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • Construction projects are being the skyscraper and the large size by limited site condition and developing construction technology. Therefore, Steel structure work is steadily increasing caused by easy to work and structural safety. However, steel-frame work has the large incidence of heavy accident potentially. Recently a research group has recently developed newly designed self-supported steel joint for enhancing safety of steel erection work. Before applying the steel joint in a construction site, economic evaluation should be performed. Thus, we proposed the method for measuring economic efficiency of the new steel joint and verified economic feasibility of the steel joint method through a case study. As a result, Steel erection method using by self-supported steel joint showed economic rather than the one using by H-beams.

  • PDF

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

Seismic Design of Reduced Beam Section (RBS) Steel Moment Connections with Bolted Web Attachment (보 웨브를 볼트 접합한 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.87-96
    • /
    • 2004
  • Recent test results on reduced beam section (RBS) steel moment connections showed that specimens with a bolted web tended to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. The measured strain data appeared to imply that a higher incidence of base metal fracture in bolted-web specimens is related to, at least in part, the increased demand on the beam flanges due to the web bolt slippage and the actual load transfer mechanism which is completely different from that usually assumed in connection design. In this paper, the practice of providing web bolts uniformly along the beam depth was brought into question. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, was proposed together with improved connection details.

A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading (단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.375-385
    • /
    • 2000
  • The required connection ductility has been evaluated, considering geometric, material and connection nonlinearity, for 6-story unbraced and 20-story braced steel structures subjected to ultimate lateral load. For material nonlinearity, section moment-curvature relationship and member stiffness matrix have been derived utilizing fiber model and linear flexibility distribution model. In 6-story structure with semi-rigid connections for rigid connection, the required connection ductility is less than that for rigid connection. In 20-story structure, the required connection ductility for semi-rigid connection is almost the same as that for shear connection and the required ductility for rigid connection is larger than that for semi-rigid or shear connection.

  • PDF

Re-evaluation of Force Transfer Mechanism of Welded Steel Moment Connections (용접 철골 모멘트접합부의 응력전달 메커니즘 재평가)

  • Lee, Choel-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.59-69
    • /
    • 2005
  • Employing the classical beam theory for the design of welded steel moment connections has been brought into question by several researchers since the 1994 Northridge earthquake. In this study, the load transfer mechanism in various welded steel moment connections is comprehensively reviewed mainly based on recent studies conducted by the writer. Available analytical and experimental results showed that the load path in almost all the welded steel moment connections is completely different from that as predicted by the classical beam theory. Vertical plates near the connection such as the beam web, the web of the straight haunch, and the rib act as a strut rather than following the classical beam theory. The shear force transfer in the RBS connection is essentially the same as that in PN type connection. Some simplified analytical models that can be used as the basis of a practical design procedure are also presented.