• Title/Summary/Keyword: 채널 등화

Search Result 523, Processing Time 0.022 seconds

The Nonlinear Equalizer for Super-RENS Read-out Signals using an Asymmetric Waveform Model (비대칭 신호 모델을 이용한 super-RENS 신호에서의 비선형 등화기)

  • Moon, Woosik;Park, Sehwang;Lee, Jieun;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Super-resolution near-field structure (super-RENS) read-out samples are affected by a nonlinear and noncausal channel, which results in inter-symbol interference (ISI). In this study, we investigate asymmetry or domain bloom in super-RENS in terms of equalization. Domain bloom is caused by writing process in optical recording. We assume in this work that the asymmetry symbol conversion scheme is to generate asymmetric symbols, and then a linear finite impulse response filter can model the read-out channel. For equalizing this overall nonlinear channel, the read-out signals are deconvolved with the finite impulse response filter and its output is decided based on the decision rule table that is developed from the asymmetry symbol conversion scheme. The proposed equalizer is investigated with the simulations and the real super-RENS samples in terms of raw bit error rate.

A Study on the Algorithm of Time Domain MMSE Equalization Using Newton Method (Newton 방법을 적용한 시간영역 MMSE 등화 알고리즘의 연구)

  • 이영진;박일근;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1978-1982
    • /
    • 2001
  • In a Multi-carrier modulation system, CP (Cyclic prefix) is inserted in the transmit tame in order to eliminate the ISI (Intersymbol Interference) and ICI (Interchannel Interference) caused by delay spread of a received signal, which in rum degrades the throughput of the system. TEQ (Time-domain equalizer) improves the system throughput by shortening the CIR (Channel Impulse Response) time and maintaining the CP length to the minimum regardless of the channel condition. In this paper, a new MMSE (Minimum Mean Square Error) TEQ algorithm is proposed and its performance is analyzed in order to speed up computing the optimum tap coefficients of the equalizer by employing Newton method.

  • PDF

A New Fast Wavelet Transform Based Adaptive Algorithm for OFDM Adaptive Equalizer and its VHDL Implementation (OFDM 적응 등화기 성능향상을 위한 새로운 고속 웨이블렛 기반 적응 알고리즘 및 VHDL 구현)

  • Joung, Min-Soo;Lee, Jae-Kyun;Lee, Chae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1107-1119
    • /
    • 2006
  • Data transmission experiences multiplicative distortion in frequency nonselective fading channel. This distortion occurs in OFDM communication channel and can be compensated using an equalizer. Usually, in the case of LMS equalizer, eigenvalue distribution of training signal is enlarged. Large eigenvalue distribution causes principally the performance of a communication system to be deteriorated. This paper proposes a new algorithm that shows the same performance as the existing fast wavelet transform algorithm with less computational complexity. The proposed algorithm was applied to an adaptive equalizer of OFDM communication system. Matlab simulation results show a better performance than the existing one. The proposed algorithm was implemented in VHDL and simulated.

Analysis of Performance for SC-FDE Systems Using Proportional Adaptive Equalizer in $2GHz{\sim}10GHz$ Frequency Radio Channel Models ($2GHz{\sim}10GHz$ 무선 채널 환경에서 비례 적응형 등화기를 이용한 SC-FDE 시스템 구현과 성능분석)

  • Yang, Yong-Seok;Lee, Kyu-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.447-453
    • /
    • 2007
  • In the multipath fading channel, OFDM(Orthogonal Frequency Division Multiplexing)system possess the characteristics of ISI/ICIwith prefix, but a weak point of circuit complexity and PAPR problem. SC-FDE(Single Carrier with Frequency Domain Equalization) performance is similar to OFDM system, but equalizer is complex in frequency domain. In this paper, simple proportional equalizer offer for SC-FDE system, it useful method in the $2GHz{\sim}\;10GHz$ channel model such as indoor, outdoor, SUI. It prove using MATLAB simulation, speed faster then OFDM system, reduce terminal complexity in same test condition.

Performance Analysis of Blind Equalization Algorithms using Multilevel Modulus (다중레벨 Modulus를 사용한 블라인드 등화 알고리즘의 성능 분석)

  • 오길남
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.69-72
    • /
    • 2001
  • 본 논문에서는 디지털 통신 시스템의 블라인드 등화에 있어서, 다중레벨 modulus를 기준 신호로 사용하여 등화기의 탭 계수 갱신 식에 사용되는 오차 신호를 형성함으로써 등화기의 블라인드 수렴 특성을 개선한 다중레벨 modulus 알고리즘들의 성능을 분석하였다. 다중경로 채널 하에서 QAM 신호점에 대해 컴퓨터 모의실험을 통하여 단일/다중레벨 modulus 알고리즘(SMMA)과 기존의 modified constant modulus algorithm(MCMA) 및 최근에 제안된 다중레벨 modulus 알고리즘(MMA) 등의 블라인드 수렴 및 정상 상태 성능을 비교하였다.

  • PDF

Performance Comparison of S-MMA Adaptive Equalization Algorithm by Slice Weighting Value in 16-QAM Signal (16-QAM 신호에서 Slice 가중치에 의한 S-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.55-61
    • /
    • 2013
  • This paper compare the performance of S-MMA(Sliced-MultiModulus Algorithm) adaptive equalization algorithm by effect of slice weighting value for the minimization of the distortion and noise in the communication channel.. In the traditional MMA algorithm, the output signal of equalizer and the dispersion constant of transmitting signal is used for calculating the equalizer coefficient, but in S-MMA, the output of equalizer and dispersion constant and the considering the output of decision device by the power of slice constant are used in order to simultaneously compensate the distortion of amplitude and phase distortion. It is confirmed by computer simulation that the slice weighting value affects the performance of adaptive equalization algorithm. The performance index includes the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER according to the signal and noise power ratio at the channel is used. As a result of simulation, the residual isi, maximum distortion and MSE performances are better in the small weighting values. But in SER performance is better in the large weighting values.

Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition (천해환경에서 적응 알고리즘을 이용한 음향 등화기의 성능 비교)

  • Chuai, Ming;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2018
  • The acoustic communication channel in shallow underwater is typically shown as time-varying multipath fading channel characteristics. The received signal through channel transmission cause inter-symbol interference (ISI) owing to multiple components of different time delay and amplitude. To compensate for this, several techniques have been used, and one of them is acoustic equalizer. In this study, we used four equalizers - feed forward equalizer (FFE), decision directed equalizer (DDE), decision feedback equalizer (DFE) and combination DDE with DFE to compensate ISI. And we applied two adaptive algorithms to adjust coefficient of equalizers - normalized least mean square algorithm and recursive least square algorithm. As result, we found that it has a significant performance improvement over 6 dB on SNR in nonlinear equalizer. By combination of DFE and DDE has almost best performance in any case.

Design of a High-speed Decision Feedback Equalizer using the Constant-Modulus Algorithm (CMA 알고리즘을 이용한 고속 DFE 등화기 설계)

  • Jeon, Yeong-Seop;;Kim, Gyeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.173-179
    • /
    • 2002
  • This paper describes an equalizer using the DFE (Decision Feedback Equalizer) structure, CMA (Constant Modulus Algorithm) and LMS (Least Mean Square) algorithms. The DFE structure has better channel adaptive performance and lower BER than the transversal structure. The proposed equalizer can be used for 16/64 QAM modems. We employ high speed multipliers, square logics and many CSAs (Carry Save Adder) for high speed operations. We have developed floating-point models and fixed-point models using the COSSAP$\^$TM/ CAD tool and developed VHDL filter. The proposed equalizer shows low BER in multipath fading channel. We have performed models. From the simulation results, we employ a 12 tap feedback filter and a 8 tap feedforward logic synthesis using the SYNOPSYS$\^$TM/ CAD tool and the SAMSUNG 0.5$\mu\textrm{m}$ standard cell library (STD80) and verified function and timing simulations. The total number of gates is about 130,000.

Performance Evaluation of H-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Step Size (Adaptive Modulus와 Adaptive Step Size를 이용한 H-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2017
  • This paper related with the performance evaluation of H-MMA (Hybrid-MMA) which is applying the adaptive modulus and adaptive step size concept to MMA adaptive equalization algorithm in order to reduce the intersymbol interference that is occurred in communication channel for digital code transmission. In the conventional MMA adaptive equalizer, the coefficient is updated by using the equalizer output and possible to compensation of amplitude and phase in 2nd dimensional QAM signal, the equalization performance were degraded due to fixed modulus and step size. For the overcomming the abovemensioned problem, it is possible to improving the equalization performance in the 2nd dimensional QAM signal by applying the adaptive modulus and adaptive step size propotional to equalizer output signal to the conventional MMA algorithm. The computer simulation was performed in the same channel for the compare the performance of MMA and proposed H-MMA which is proposed in this paper. As a result of simulation, the proposed H-MMA has slower convergence time in order to arriving the steady state than MMA. But after the steady state, H-MMA has more superior to the MMA in every performance index and the equalization noise was reduced.

Performance analysis of joint equalizer and phase-locked loop in underwater acoustic communications (수중 음향통신에서 위상고정루프와 결합된 등화기의 성능분석)

  • Kim, Seunghwan;Kim, In Soo;Do, Dae-Won;Ko, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • In this paper, the performance of joint equalizer and phase-locked loop in underwater communications is analyzed. In the channel where the Doppler frequency exists, it is difficult to recover the transmitted data only by the equalizer. To compensate for the Doppler frequency, the phase-locked loop is used. For removing the time-varying multipath and the Doppler frequency simultaneously, the equalizer and the phase-locked loop operate jointly. Also, if the initial Doppler frequency error obtained by Fast Fourier Transform (FFT) is compensated, the convergence speed of the joint equalizer and phase-locked loop can be improved. To verify the performance, lake and sea experiments were conducted. As a result, it was showed that the joint equalizer and phase-locked loop converges sufficiently in the preamble (known data) period regardless of whether the Doppler frequency is compensated or not. And, the bit error in random data period is not occurred. However, we can increase the convergence speed of the equalizer more than twice through the compensation of Doppler frequency.