• Title/Summary/Keyword: 참외주 제조

Search Result 6, Processing Time 0.065 seconds

Pretreatment and Storage Condition of Abnormal Fermented Oriental Melon for Fermentation Use (참외주 제조를 위한 이상발효 참외의 원료전처리 및 저장조건의 확립)

  • Kim, Tae-Young;Lee, Sang-Ho;Kim, Jin-Sook;Kim, Sang-Bum
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.202-208
    • /
    • 2006
  • Since abnormal fermentation and short storage duration of oriental melon are the main problems causing loss in commercial value, it is necessary to develop a food processing method using uncommercial melon. In this study, we suggested the effective pretreatment and storage conditions of melon as the material for alcoholic beverage production. Abnormally fermented melon had smaller carbohydrate and larger moisture content than normal one, indicating that carbohydrate in normal melon was probably converted to fermented products during fermentation. The sugar content of oriental melon was increased after fruiting and the highest value $(12.4^{\circ}Brix)$ was found at 5 weeks of storage. The maximum storage duration of normal and fermented oriental melons were 25 and 7 days at $4^{\circ}C$, and 8 and 4 days at room temperature, respectively. The oriental melon for fermentation-use could be conserved after slicing for 30 days at $4^{\circ}C$ with the addition of 1.5% citric acid and for one year at $-20^{\circ}C$ with the plastic film sealing, respectively.

Anticancer Effects of the Extracts of Oriental Melon (Cucumis melo L. var makuwa Makino) Seeds (참외(Cucumis melo L. var makuwa Makino) 종자 추출물의 항암 활성)

  • Kim, Jung-Hyun;Suh, Jun-Kyu;Kang, Young-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.647-651
    • /
    • 2012
  • The objective of this study was to investigate the anticancer effects of the extracts of oriental melon seeds. Various solvent extracts of oriental melon seeds were prepared and their anticancer effects were examined using in vitro MTT and CV assays. The anticancer effects of various extracts of oriental melon seeds were also examined in five human cancer cell lines including A549, AGS, HT-29, MCF-7 and HepG2. The ethanol extract of heated oriental melon seeds showed the potent cytotoxic effects especially against mouse hepatoma cell line(Hepa1c1c7), human hepatoma cell line(HepG2) and human breast cancer cell line(MCF-7). These data suggest that oriental melon seeds can be a promising anticancer agent against human liver and breast cancer.

Functional Properties of Muskmelon Vinegars Manufactured with Traditional Fermentation Methods (전통적인 발효 방법으로 제조된 참외식초의 기능적 특성)

  • Jung, Kyung Im;Ha, Na Yeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.345-353
    • /
    • 2019
  • This study investigated the physiochemical properties, the anti-oxidant and alcohol metabolism enzyme activities, and the anti-inflammatory effects of three muskmelon vinegars prepared under different fermentation conditions, namely MV-1, MV-2, and MV-3. The total acidity of each vinegar was 4.00%, 4.32%, and 4.35%, respectively. Organic acid analysis showed that malic acid (58.37 mg/ml) was the most prevalent in MV-1 and that acetic acid was most prevalent in both MV-2 (46.95 mg/ml) and MV-3 (66.70 mg/ml). The total phenolic content of the muskmelon vinegars was highest at $129.74{\mu}g$ tannic acid equivalents (TAE)/ml in MV-3. The DPPH radical scavenging activity of the vinegars increased in a dose-dependent manner (p<0.05) and was 89.28% at MV-3 40% concentration. Similarly, SOD activitity increased in a concentration-dependent manner (p<0.05) so that levels for MV-1, MV-2, and MV-3 at 60% concentrations were 40.84%, 52.17% and 72.55%, respectively (p<0.05). Moreover, the ADH and ALDH activities of muskmelon vinegar were seen to increase in a concentration-dependent manner; ADH activity at 60% concentration was highest at 136.58% in MV-1 and ALDH activity at 60% concentration was highest at 100.25% in MV-2. The nitrite scavenging activities of MV-1, MV-2, and MV-3 at pH 1.2 were found to be 81.58%, 94.72%, and 87.75%, respectively. Anti-inflammatory effects were also examined, using LPS-stimulated RAW 264.7 cells, and nitric oxide production was reduced to 25.93%, 10.01%, and 79.75% by addition of MV-1, MV-2, and MV-3 at 1% concentration, respectively (p<0.05). These results suggest that the MV-3 muskmelon vinegar has great potential as an ingredient for high quality functional health beverages.

Monitoring of the Changes in Volatile Flavor Components in Oriental Melon Wine Using SPME (SPME를 이용한 참외와인의 휘발성 향기성분의 모니터링)

  • Jo, Yong-Jun;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • This study was conducted to investigate changes in the main volatile flavor components of oriental melon during the process of alcohol fermentation via SPME (solid phase micro extraction). The flavor components of oriental melon were shown to have mainly included melon and green flavors. The green flavor was identified to be nonanal, 1-butanol, 1-octen-2-ol and benzene, and its relative concentration was shown to be 16.66%. The nonanal concentration was shown to have been reduced among the green-flavor components, but no significant change in remaining components was observed. Mainly, sweet flavor tended to increase, and the relative concentration of benzene was particularly shown to have increase by 25.58%, accounting for the highest relative concentration. The amount of green-flavor components, except for 1-butanol, was shown to have significantly decrease after alcohol fermentation. Then, no component of green-flavor, which causes an offensive smell, was found during fermentation and aging. Meanwhile, the volatile flavor components, which are consist of acids, were shown to have been produced during alcohol fermentation. In particular, octanoic acid, which causes off-flavor, was shown to be 60.99%, a very high relative concentration during the aging stage. In addition, acetic acid with a pungent sour flavor tended to be produced. A further study on the improvement of flavor in the production of oriental melon wine is required.

Enzyme treatment for clarification of spoiled oriental melon juice (참외 저급과 주스의 청징화를 위한 효소처리 조건)

  • Jang, Se-Jin;Jo, Yong-Jun;Seo, Ji-Hyung;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.506-511
    • /
    • 2014
  • In Gyeongsangbuk-do seongju area, hundreds of tons of spoiled oriental melon are harvested annually. Therefore, ways to prevent such spoilage are needed. This study was conducted to investigate the quality characteristics of spoiled oriental melon juice after enzyme treatment for the production of oriental melon concentrate. The treatment of the oriental melon juice with three kinds of enzymes with variable concentrations showed the following results. PECE(1), which was compounded pectinase and cellulase at 0.01% (v/v), gave the melon a 0.16 brown color and 0.01 turbidity, and the highest L value of 97.00. The detected free sugar contents were fructose, glucose and sucrose, with the amount of sucrose the highest at roughly 4,000 mg%. The mixture of different enzyme treatments resulted in a 0.15 brown color and 0.01 turbidity at 60 minutes, and the L value was high at 97.25. The enzyme treatment temperatures of $50^{\circ}C$ and $60^{\circ}C$ yielded a low-level brown color and low turbidity, but the L values were high at $60^{\circ}C$ and $70^{\circ}C$. These results showed that 0.01% (v/v) mixing enzyme, i.e., pectinase and cellulose compounded at $60^{\circ}C$ for 60 min, must be used for the production of oriental melon concentrate.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.