DOI QR코드

DOI QR Code

Functional Properties of Muskmelon Vinegars Manufactured with Traditional Fermentation Methods

전통적인 발효 방법으로 제조된 참외식초의 기능적 특성

  • 정경임 (신라대학교 식품영양학과) ;
  • 하나연 (한국전통발효문화연구원) ;
  • 최영주 (신라대학교 식품영양학과)
  • Received : 2018.10.16
  • Accepted : 2018.11.30
  • Published : 2019.03.30

Abstract

This study investigated the physiochemical properties, the anti-oxidant and alcohol metabolism enzyme activities, and the anti-inflammatory effects of three muskmelon vinegars prepared under different fermentation conditions, namely MV-1, MV-2, and MV-3. The total acidity of each vinegar was 4.00%, 4.32%, and 4.35%, respectively. Organic acid analysis showed that malic acid (58.37 mg/ml) was the most prevalent in MV-1 and that acetic acid was most prevalent in both MV-2 (46.95 mg/ml) and MV-3 (66.70 mg/ml). The total phenolic content of the muskmelon vinegars was highest at $129.74{\mu}g$ tannic acid equivalents (TAE)/ml in MV-3. The DPPH radical scavenging activity of the vinegars increased in a dose-dependent manner (p<0.05) and was 89.28% at MV-3 40% concentration. Similarly, SOD activitity increased in a concentration-dependent manner (p<0.05) so that levels for MV-1, MV-2, and MV-3 at 60% concentrations were 40.84%, 52.17% and 72.55%, respectively (p<0.05). Moreover, the ADH and ALDH activities of muskmelon vinegar were seen to increase in a concentration-dependent manner; ADH activity at 60% concentration was highest at 136.58% in MV-1 and ALDH activity at 60% concentration was highest at 100.25% in MV-2. The nitrite scavenging activities of MV-1, MV-2, and MV-3 at pH 1.2 were found to be 81.58%, 94.72%, and 87.75%, respectively. Anti-inflammatory effects were also examined, using LPS-stimulated RAW 264.7 cells, and nitric oxide production was reduced to 25.93%, 10.01%, and 79.75% by addition of MV-1, MV-2, and MV-3 at 1% concentration, respectively (p<0.05). These results suggest that the MV-3 muskmelon vinegar has great potential as an ingredient for high quality functional health beverages.

본 연구에서는 다양한 방법으로 제조한 참외식초의 이화학적 특성과 항산화 작용, 알코올 대사 효소 활성 및 RAW 264.7 세포에서의 항염증 활성에 미치는 영향을 알아보았다. 각기 다른 방법으로 제조한 참외식초의 총 산도는 MV-1은 4.00%, MV-2는 4.32%, MV-3은 4.35%로 나타났다. 유기산 측정결과 MV-1은 malic acid (58.37 mg/ml), MV-2 (46.95 mg/ml)와 MV-3 (66.70 mg/ml)는 acetic acid가 가장 높게 나타났다. 참외식초의 총 페놀 함량은 MV-3에서 $129.74{\mu}g$ TAE/ml로 가장 높게 나타났다(p<0.05). 참외식초의 DPPH radical 소거능은 농도 의존적으로 증가하였으며(p<0.05), MV-3 40% 농도에서 89.28%로 가장 높게 나타났다. SOD 활성은 농도 의존적으로 증가하였으며(p<0.05), 60% 농도에서의 MV-1와 MV-2 및 MV-3는 각각 40.84%, 52.17%, 72.55%로 나타났다(p<0.05). 참외식초의 ADH 및 ALDH 활성은 농도의존적으로 증가하였으며, 60% 농도에서의 ADH 활성은 MV-1에서 136.58%로 가장 높게 나타났고, ALDH 활성은 MV-2에서 100.25%로 나타났다. 아질산염 소거능 분석에서는 pH 1.2에서 MV-1, MV-2, MV-3 각각 81.58%와 94.72% 및 87.75%로 나타났다. 참외식초의 항염증 활성 측정을 위하여 LPS로 유도된 RAW 264.7 cell의 NO 합성을 측정한 결과, 1%에서 농도에서 MV-1, MV-2, MV-3의 NO 합성은 각각 25.93%와 10.01% 및 79.75% 감소하였다(p<0.05). 이상의 결과와 같이 참외 꼭지를 포함하여 0.5 cm두께로 슬라이스한 참외와 찹쌀고두밥 및 누룩을 이용하여 전통적인 방법으로 제조한 MV-3는 항산화 및 항염증 활성이 높은것으로 나타났기에 기능성 건강음료로서의 가능성이 높은 것으로 판단된다.

Keywords

SMGHBM_2019_v29n3_345_f0001.png 이미지

Fig. 1. DPPH free radical scavenging activity of muskmelon vinegars manufactured with different methods.

SMGHBM_2019_v29n3_345_f0002.png 이미지

Fig. 2. Superoxide dismutase (SOD) activity of muskmelon vinegars manufactured with different methods.

SMGHBM_2019_v29n3_345_f0003.png 이미지

Fig. 3. Effects of muskmelon vinegars manufactured with different methods on the alcohol dehydrogenase (ADH).

SMGHBM_2019_v29n3_345_f0004.png 이미지

Fig. 4. Effects of muskmelon vinegars manufactured with different methods on the aldehyde dehydrogenase (ALDH).

SMGHBM_2019_v29n3_345_f0005.png 이미지

Fig. 5. Nitrite scavenging effect of muskmelon vinegars manufactured with different methods under different pH conditions.

SMGHBM_2019_v29n3_345_f0006.png 이미지

Fig. 6. Effects of muskmelon vinegars manufactured with different methods on NO synthesis (A) and cell viability (B) in bacterial LPS-stimulated RAW264.7 cells. RAW264.7 cells were cultured for 24 hr with various concentration of PBE in the presence of LPS (10 μg/ml). Cytotoxicity was determined by MTT assay. NO release was measured using the method of Griess (nitrite).

Table 1. Total acidity of muskmelon vinegars manufactured with different methods

SMGHBM_2019_v29n3_345_t0001.png 이미지

Table 2. Organic acid of muskmelon vinegars manufactured with different methods

SMGHBM_2019_v29n3_345_t0002.png 이미지

Table 3. Total polyphenol contents of muskmelon vinegars manufactured with different methods

SMGHBM_2019_v29n3_345_t0003.png 이미지

References

  1. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1200. https://doi.org/10.1038/1811199a0
  2. Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K. and Guzel-Seydim, Z. B. 2014. Functional properties of vinegar. J. Food Sci. 79, 757-764. https://doi.org/10.1111/1750-3841.12434
  3. Choi, J. T., Joo, H. K. and Lee, S. K. 1995. The effect of Schizandrae fructus extract on alcohol fermentation and enzyme activities of Saccharomyces cerevisiae. Agri. Chem. Biotech. 38, 278-282.
  4. Choi, M. H., Kim, M. J., Jeon, Y. J. and Shin, H. J. 2014. Quality changes of fresh vegetable and fruit juice by various juicers. Kor. Soc. Biotechnol. Bioeng. J. 29, 145-154.
  5. Chun, H., Choi, Y. H., Um, Y. C., Paek, Y., Yu, I. H., You, H. Y., Hyun, T. S., Yon, M. Y. and Shin, Y. S., 2008. Folate contents of oriental melon (Cucumis melo) cultivated in greenhouse covered with different films and varieties. J. Bio-Env. Conl. 17, 32-37.
  6. Gray, J. I. and Dugan, J. R. L. R. 1975. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40, 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  7. Han, J. H., Moon, H. K., Chung, S. K. and Kang, W. W. 2015. Comparison of physiological activities of Radish Bud (Raphanus sativus L.) according to extraction solvent and sprouting period. J. Kor. Soc. Food Sci. Nutr. 44, 549-556. https://doi.org/10.3746/jkfn.2015.44.4.549
  8. Heo, S. J., Park, E. J., Lee, K. W. and Jeon, Y. J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technol. 96, 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  9. Hong, D. W., Shin, S. W. and Chun, J. Y. 2017. Physicochemical properties of commercial citrus fruit vinegar products. Kor. J. Food Cook Sci. 33, 420-426. https://doi.org/10.9724/kfcs.2017.33.4.420
  10. Hong, S. M., Moon, H. S., Lee, J. H., Lee, H. I., Jeong, J. H., Lee, M. K. and Seo, K. I. 2012. Development of functional vinegar by using cucumbers. J. Kor. Soc. Food Sci. Nutr. 41, 927-935. https://doi.org/10.3746/jkfn.2012.41.7.927
  11. Hwang, H. Y., Ha, H. T., Ha, S. B., Seong, G. U., Hwang, I. W. and Chung, S. K. 2015. Quality characteristics and antioxidant capacities of oriental melon wine depending on pretreatments. Kor. J. Food Preserv. 22, 421-427. https://doi.org/10.11002/kjfp.2015.22.3.421
  12. Jeong, H. J., Sung, M. S., Kim, Y. H., Ham, H. M., Choi, Y. M. and Lee, J. S. 2012. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-stimulated RAW264.7 macrophages. J. Kor. Soc. Food Sci. Nutr. 41, 888-894. https://doi.org/10.3746/jkfn.2012.41.7.888
  13. Jeong, Y. J., Seo, J. H Jung, S. H., Shin, S. R. and Kim, K. S. 1998. The quality comparison of uncleaned rice vinegar by two stages fermentation with commercial uncleaned rice vinegar. Kor. J. Postharvest Sci. Technol. 5, 374-379.
  14. Joo, K. H., Cho, M. H., Park, K. J., Jeong, S. W. and Lim, J. H. 2009. Effects of fermentation method and brown rice content on quality characteristics of brown rice vinegar. Kor. J. Food Preserv. 16, 33-39.
  15. Kang, K. O. 2011. Physiological and antioxidant activities of green, oolong and black tea extracts. J. East Asian Soc. Dietary Life 21, 243-249.
  16. Kee, J. Y., Kim, M. O., You, I. Y., Chai, J. Y., Hong, E. S., An, S. C., Kim, H., Park, S. M., Youn, S. J. and Chae, H. B. 2003. Effects of genetic polymorphisms of ethanol-metabolizing enzymes on alcohol drinking behaviors. Kor. J. Hepatol. 9, 89-97.
  17. Kim, D. S. and Shin, K. S. 2014. Chemical property and macrophage stimulating activity of polysaccharides isolated from brown rice and persimmon vinegars. Kor. J. Food Nutr. 27, 1033-1042. https://doi.org/10.9799/ksfan.2014.27.6.1033
  18. Kim, H. S. and Kang, H. W. 2010. Antioxidant activity of ethanol extracts of non-edible parts (stalk, stem, leaf, seed) from oriental melon. Kor. J. Plant Res. 23, 451-457.
  19. Kim, H. S., Hong, M. J., Kang, I. Y., Jung, J. Y, Kim, H. K., Shin, Y. S., Jun, H. J., Suh, J. K. and Kang, Y. H. 2009. Radical scavenging activities and antioxidant constituents of oriental melon extract. J. Bio-Env. Con. 18, 442-447.
  20. Kim, H. S., Ku, K. M., Suh, J. K. and Kang, Y. H. 2009. Quinone reductase inductive activity and growth inhibitory effect against hepatoma cell of oriental melon extract. J. Bio-Env. Con. 18, 448-453.
  21. Kim, S. H., Choi, D. S., Athukorala, Y., Jeon, Y. J., Senevirathne, M. and Rha, C. K. 2007. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. J. Food Sci. Nutr. 12, 63-73.
  22. Kim, S. M., Cho, Y. S. and Sung, S. K. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Kor. J. Food Sci. Technol. 33, 626-632.
  23. Kim, T. Y., Kim, S. B., Jeong, Y. J., Shin, J. S. and Park, N. Y. 2003. Quality properties of Takju mash vinegar added muskmelon. Kor. J. Food Preser. 10, 522-526.
  24. Kim, Y. S. 2017. Optimization of fermentation conditions of burdock vinegar and effect on anti-obesity of fermented vinegar. M.S. Dissertation, Daegu University, Daegu, Korea.
  25. Koivula, T. and Koivusalo, M. 1975. Different from of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim. Biophys. Acta 397, 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  26. Lee, G. H., Kwon, S. H., Lee, M. H., Kim, S. K. and Kwon, J. H. 2002. Monitoring on alcohol and acetic acid fermentation properties of muskmelon. Kor. J. Food Sci. 34, 30-62.
  27. Lee, M. K., Choi, S. R., Lee, J., Choi, Y. H., Lee, J. H., Park, K. U., Kwon, S. H. and Seo, K. I. 2012. Quality characteristics and anti-diabetic effect of yacon vinegar. J. Kor. Soc. Food Sci. Nutr. 41, 79-86. https://doi.org/10.3746/jkfn.2012.41.1.079
  28. Lee, S. J., Shin, J. H., Chung, M. J. and Sung, N. J. 2000. Effect of natural foods on the inhibition of N-nitrosodimethylamine formation. J. Fd. Hyg. Saf. 15, 95-100.
  29. Lee, Y. C. and Lee, J. H. 2000. A manufacturing process of high-strength vinegar. Food Industry Nutr. 5, 13-17.
  30. Maisuthisakul, P., Suttajit, M. and Pongsawatmanit, R. 2007. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100, 1409-1418. https://doi.org/10.1016/j.foodchem.2005.11.032
  31. Matsukawa, R., Dubinsky, Z., Kishimoto, E., Masaki, K., Masuda, Y. and Takeuchi, T. 1997. A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol. 9, 29-35. https://doi.org/10.1023/A:1007935218120
  32. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754. https://doi.org/10.1084/jem.178.2.749
  33. Miro, M. 1995. Cucurbitacins and their pharmacological effects. Phytotherapy Res. 9, 159-168 https://doi.org/10.1002/ptr.2650090302
  34. Mo, H. W., Jung, Y. H., Jeong, J. S., Choi, K. H., Choi, S. W., Park, C. S., Choi, M. A., Kim, M. L. and Kim, M. S. 2013. Quality characteristics of vinegar fermented using omija (Schizandra chinensis Baillon). J. Kor. Soc. Food Sci. Nutr. 42, 441-449. https://doi.org/10.3746/jkfn.2013.42.3.441
  35. Moncada, S., Palmer, R. M. and Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Phamacol. Rev. 43, 109-142.
  36. Moon, S. Y., Chung, H. C. and Yoon, H. N. 1997. Comparative analysis of commercial vinegars in physicochemical properties, minor components and organoleptic tastes. Kor. J. Food Sci. Technol. 29, 663-670.
  37. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 2, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  38. Park, E. H., Choi, C. Y., Kwon, H. J. and Lim, M. D. 2016. Literature review on type and manufacturing methods of Korean traditional vinegar. Food Service Industry 49, 94-99.
  39. Park, E. M., Lee, H. J. and Chung, Y. K. 2015. Quality characteristics and antioxidant activity of brown rice pear vinegar. J. East Asian Soc. Dietary Life 25, 1041-1048. https://doi.org/10.17495/easdl.2015.12.25.6.1041
  40. Park, S. C. 1993. Ethanol oxidation is accelerated by augmentation of malate-aspartate shuttle with aspartate. Kor. J. Biochem. 25, 137-143.
  41. Park, S. S, Park, N, Kang, J. U., Shin, S. C. and Lee, D. U. 2009. Cognition enhancing effect of muskmelon (Cucumis melo) extracts on scopolamine-induced memory impairment in mice. J. Life Sci. 19, 688-691. https://doi.org/10.5352/JLS.2009.19.5.688
  42. Park, Y. H., Choi, J. H., Whang, K., Lee, S. O., Yang, S. A. and Yu, M. H. 2014. Inhibitory effects of lyophilized dropwort vinegar powder on adipocyte differentiation and inflammatory. J. Life Sci. 24, 476-484. https://doi.org/10.5352/JLS.2014.24.5.476
  43. Racker, E. 1955. Alcohol dehydrogenase from bakers yeast. Methods Enzymol. 1, 500-506. https://doi.org/10.1016/0076-6879(55)01084-7
  44. Shin, Y. S., Lee, J. E., Yeon, I. K., Do, H. W., Cheong, J. D., Kang, C. K., Choi, S. Y., Youn, S. J., Cho, J. G. and Kwoen, D. J. 2008. Antioxidant and antimicrobial effects of extracts with water and ethanol of oriental melon (Cucumis melo L. var makuwa Makino) extracts. J. Kor. Soc. Appl. Biol. Chem. 51, 194-199.
  45. Shin, Y. S., Lee, J. E., Yeon, I. K., Do, H. W., Cheong, J. D., Kang, C. K., Choi, S. Y., Youn, S. J., Cho, J. G. and Kwoen, D. J. 2008. Antioxidant effects and tyrosinase inhibition activity of oriental melon (Cucumis melo L. var makuwa Makino) extracts. J. Life Sci. 18, 963-967. https://doi.org/10.5352/JLS.2008.18.7.963
  46. Sim, H, J., Seo, W. T., Choi, M. H., Kim, K. H., Shin, J. H. and Kang, M. J. 2016. Quality characteristics of vinegar added with different levels of black garlic. Kor. J. Food Cook Sci. 32, 16-26. https://doi.org/10.9724/kfcs.2016.32.1.16
  47. Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  48. Wakimoto, N., Yin, D., O'Kelly, J., Haritunians, T., Karlan, B., Said, J., Xing, H. and Koeffler, H. P. 2008. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci. 99, 1793-1787. https://doi.org/10.1111/j.1349-7006.2008.00899.x
  49. Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysacchride and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215. https://doi.org/10.1042/bj3160209
  50. Yang, S., Chang, Y., Zheng, L., Wei, Z., Qu, H. and Cao, S. 2005. Protective effects of cucurbitacin B on the acute alcohol liver injury induced by $CCl_4$. Shipin Kexue 26, 524-526.
  51. Yi, M. R., Hwang, J. H., Oh, Y. S., Oh, H. J. and Lim, S. B. 2014. Quality characteristics and antioxidant activity of immature Citrus unshiu vinegar. J. Kor. Soc. Food Sci. Nutr. 43, 250-257. https://doi.org/10.3746/jkfn.2014.43.2.250