• Title/Summary/Keyword: 차량 GPS 데이터

Search Result 134, Processing Time 0.036 seconds

A Study of a simulator development generating virtual GPS signals (가상 GPS 신호발생 시뮬레이터 개발에 관한 연구)

  • Ko, Yeon-Seong;Lee, Jong-Joo;Moon, Hyun-Ho;Cha, Jae-Sang;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1207-1208
    • /
    • 2007
  • 현재 GPS 데이터는 항공기 운항과 선박운항, 해양활동 및 육상 운송수단 등의 광범위한 분야에서 사용 중이다. 본 논문은 이 데이터를 시간과 장소에 제약 없이 시뮬레이터를 통하여 얻을 수 있도록 하였으며, 시뮬레이터를 통하여 발생한 GPS 데이터는 현재 상용화된 GPS 수신기의 신호와 동일하다. 또한 GPS 데이터는 GPS 국제 표준 데이터인 NMEA-0183의 위치정보 프로토콜을 사용하였으며, 데이터 분석을 위한 NMEA 프로토콜의 취득은 상용 GPS 모듈을 주행 중인 실제 차량에 탑재해 취득하였으며, 신호취득에는 RS232C통신 인터페이스를 사용하였다. 시뮬레이터의 프로그래밍은 GUI 기반의 윈도우즈 응용프로그램을 사용하여 누구나 간단한 조작만으로 차량의 위치와 속도 등의 변경이 가능하도록 구현하였다.

  • PDF

A Fuel Economy Improvement Method using GPS data in Highway (고속도로에서 GPS데이터를 이용한 연비 향상 방안)

  • Choi, Seong-Cheol;Lee, Won-Ho;Moon, Byung-Koo;Kim, Young-Il;Han, Young-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.537-539
    • /
    • 2011
  • 최근의 차량 연비는 엔진, 파워트레인 등 차량의 구성품들을 성능 개선하여 많이 향상 되었으나 연비 측정은 현재도 주어진 모드(LA-4, FTP-75 등)에서 컴퓨터 모의시험 및 다이나모에서 수행한다. 본 논문에서는 차량에 미리 장착된 지리정보데이터와 현재 주행하면서 수신되는 GPS 데이터를 이용하여 약 213Km 영동고속도로를 주행하면서 실제 도로의 연비 향상 방안을 도출한다. 지리정보데이터와 주행하면서 수신한 GPS 데이터 중에서 거리와 고도 데이터를 추출하여 각 구간의 경사도, 주행저항을 계산, 연비향상 알고리즘에 따른 속도 프로파일을 영동고속도로 전 구간에 대해서 완성하고 이 속도 프로파일로 컴퓨터를 이용한 AVL사의 CRUISE 프로그램으로 모의 주행하여 연비를 산출하고 연비 향상 방안을 제안한다.

  • PDF

Realization of a Automatic Grading System for Driver's License Test (자동차 운전면허 시험을 위한 자동 채점 시스템 구현)

  • Kim, Chul Woo;Lee, Dong Hahk;Yang, Jae Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.109-120
    • /
    • 2017
  • It is important to estimate objectively in the driving test. Especially, the driving test is examined by totally driving ability, rule observation and situational judgement. For this, a grading automation system for driving test was presented by using GPS, sensor data and equipment operation informations. This system is composed of vehicle mounted module, automatic grading terminal, data controller, data storage and processing server. The vehicle mounted module gathters sensor data in the car. The terminal performs automatic grading using the received sensor data according the driving test criterion. To overcome the misposition of vehicle in the map due to GPS error, we proposed the automatic grading system by map matching method, path deviation and return algorithm. In the experimental results, it was possible to grade automatically, display the right position of the car, and return to the right path under 10 seconds when the vehicle was out of the shadow region of the GPS. This system can be also applied to the driving education.

Design and Implementation of Multi-Sensor-based Vehicle Localization and Tracking System (멀티센서 기반 차량 위치인식 시스템의 설계 및 구현)

  • Jang, Yoon-Ho;Nam, Sang-Kyoon;Bae, Sang-Jun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, Gaussian probability distribution model based multi-sensor data fusion algorithm is proposed for a vehicular location awareness system. Conventional vehicular location awareness systems are operated by GPS (Global Positioning System). However, the conventional system is not working in the indoor of building or urban area where the receiver is difficult to receive the signal from satellites. A method which is combined GPS and UWB (Ultra Wide-Band) has developed to improve this problem. However, vehicular is difficult to receive seamless location information since the measurement systems by both GPS and UWB convert the vehicle's movement information separately at each sensor. In this paper, normalized probability distribution model based Hybrid UWB/GPS is proposed by utilizing GPS location data and UWB sensor data. Therefore the proposed system provides information with seamless and location flexible properties. The proposed system tested by Ubisense and Asen GPS in the $12m{\times}8m$ outdoor environments. As a result, the proposed system has improved performance for accurateness and connection ability between devices to support various CNS (Car Navigation System).

  • PDF

Development and Evaluation of a System to Determine Position and Attitudes using In-Vehivle Seonsors (차량 내부 센서를 이용한 위치·자세 결정 시스템 구축 및 평가)

  • Kim, Ho Jun;Choi, Kyuong Ah;Lee, Im Pyeong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.57-67
    • /
    • 2013
  • GPS based car navigation systems show significant problems in such environment as a tunnel, a road surrounded by high buildings. In this study, we thus propose a method to determine positions and attitudes using only in-vehicle sensory data without a GPS. To check the feasibility of this method, we constructed a system to acquire in-vehicle sensory data and reference data simultaneously. We acquired test data using this system, estimated the trajectory based on the proposed method and evaluated the accuracy of both the sensory data and the trajectory. The speed and angular velocities provided by the in-vehicle sensors include 1.1 km/h and 0.8 deg/s RMS errors, respectively. The estimated trajectory using these data shows 20.8 m RMS errors for a 15 minute drive. In future, if we further combine additional sensors such as a camera and a GPS, we can achieve a high accurate navigation system at a low cost without an expensive high-grade external IMU.

Development of Queue Length, Link Travel Time Estimation and Traffic Condition Decision Algorithm using Taxi GPS Data (택시 GPS데이터를 활용한 대기차량길이, 링크통행시간 추정 및 교통상황판단 알고리즘 개발)

  • Hwang, Jae-Seong;Lee, Yong-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.59-72
    • /
    • 2017
  • As the part of study which handles the measure to use the individual vehicle information of taxi GPS data on signal controls in order to overcome the limitation of Loop detector-based collecting methods of real-time signal control system, this paper conducted series of evaluations and improvements on link travel time, queue vehicle time estimates and traffic condition decision algorithm from the research introduced in 2016. considering the control group and the other, the link travel time has enhanced the travel time and the length of queue vehicle has enhanced the estimated model taking account of the traffic situation. It is analyzed that the accuracy of the average link travel time and the length of queue vehicle are respectably both approximately 95 % and 85%. The traffic condition decision algorithm reflected the improved travel speed and vehicle length. Smoothing was performed to determine the trend of the traffic situation and reduce the fluctuation of the data, and the algorithms have refined so as to reflect the pass period on overflow judgment criterion.

An Implementation of Positioning System using Multiple Data in Smart Phone (스마트폰에서 다중데이터를 이용한 측위시스템 구현)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2195-2202
    • /
    • 2011
  • Recently, navigation system is used to inform users of vehicle location and driving direction, moving distance and so on. This navigation uses GPS sensor for current location determination. The GPS sensor will determinate current coordinates by using triangulation algorithm. This characteristic bring about that the GPS signal is not available in the shadow region such as tunnel and urban canyon. Moreover, Even though the signal is available, inherent positional error rate of the GPS often results in the dislocation of vehicle. To solve, these problems, a new positioning system is proposed in the paper. The System utilizes geomagnetic sensors of smartphone, speed information of CAN of vehicle though bluetooth and WiFi APs for GPS shadow area. The experimental test shadows that the proposed system using multiple data is able to determine the position of vehicle in GPS shadow areas.

Positioning by using Speed and GeoMagnetic Sensor Data base on Vehicle Network (차량 네트워크 기반 속도 및 지자기센서 데이터를 이용한 측위 시스템)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2730-2736
    • /
    • 2010
  • Recently, various networks have been introduced in the car of the internal and external sides. These have been integrated by one HMI(Human Machine Interface) to control devices of each network and provide information service. The existing vehicle navigation system, providing GPS based vehicle positioning service, has been included to these integrated networks as a default option. The GPS has been used to the most universal device to provide position information by using satellites' signal. But It is impossible to provide the position information when the GPS can't receive the satellites' signal in the area of tunnel, urban canyon, or forest canopy. Thus, this paper propose and implement the method of measuring vehicle position by using the sensing data of internal CAN network and external Wi-Fi network of the integrated car navigation circumstances when the GPS doesn't work normally. The results obtained by implementation shows the proposed method works well by map matching.

Similar Trajectory Store Scheme for Efficient Store of Vehicle Historical Data (효율적인 차량 이력 데이터 저장을 위한 유사 궤적 저장 기법)

  • Kwak Ho-Young;Han Kyoung-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.114-125
    • /
    • 2006
  • Since wireless Internet services and small mobile communication devices come into wide use as well as the use of GPS is rapidly growing, researches on moving object, whose location information shifts sequently in accordance with time interval, are being carried out actively. Especially, the researches on vehicle moving object are applied to Advanced traveler information system, vehicle tracking system, and distribution transport system. These systems are very useful in searching previous positions, predicted future positions, the optimum course, and the shortest course of a vehicle by managing historical data of the vehicle movement. In addition, vehicle historical data are used for distribution transport plan and vehicle allocation. Vehicle historical data are stored at regular intervals, which can have a pattern. For example, a vehicle going repeatedly around a specific section follows a route very similar to another. If historical data of the vehicle with a repeated route course are stored at regular intervals, many redundant data occur, which result in much waste of storage. Therefore this thesis suggest a vehicle historical data store scheme for vehicles with a repeated route course using similar trajectory which efficiently store vehicle historical data.

  • PDF

The Study on the location-based realtime measurement system for the road surface using Laser Displacement Sensor and GPS (레이저 변위센서와 GPS를 이용한 위치기반 실시간 도로표면 측정 시스템에 관한 연구)

  • Hwang, Seon-Deok;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2351-2353
    • /
    • 2005
  • 본 논문은 포장도로의 표면 상태를 고성능의 레이저 변위 센서를 사용하여 정밀하게 측정하고, GPS(Global Positioning System)를 사용하여 측정 위치 데이터를 획득하는 도로 표면 측정 장비 개발에 관한 논문이다. 본 연구에서는 전체 시스템을 설계하고, 차량 주행을 모사한 실험 모형을 제작하여 실내 실험을 실시하였으며, GPS 단말기로부터 실시간으로 위치 신호를 수신하여 도로면 데이터와 연동할 수 있도록 하였다. 그리고 평가 차량의 전면에 레일(rail)을 장착하여 레이저 변위 센서가 좌우로 왕복운동이 가능하도록 하였으며, 레일을 작동시킨 상태에서 도로면을 측정해 보았다. 실험 모형의 측정 곁과는 차량이 80km/h로 주행할 때 도로 표지 타이닝(tinning)의 폭 오차 3.24%, 깊이 오차 5%였다. 차량이 정지된 상태에서 레일을 작동시켜 요철을 측정하였을 경우 레일 방향에 대한 폭 오차는 0.07%였다.

  • PDF