DOI QR코드

DOI QR Code

Development of Queue Length, Link Travel Time Estimation and Traffic Condition Decision Algorithm using Taxi GPS Data

택시 GPS데이터를 활용한 대기차량길이, 링크통행시간 추정 및 교통상황판단 알고리즘 개발

  • Hwang, Jae-Seong (Dept. of Construction and Transportation Eng., Univ. of Ajou) ;
  • Lee, Yong-Ju (Dept. of Transportation Research Institute, Univ. of Ajou) ;
  • Lee, Choul-Ki (Dept. of Transportation System Eng., Univ. of Ajou)
  • 황재성 (아주대학교 건설교통공학과) ;
  • 이용주 (아주대학교 교통연구센터) ;
  • 이철기 (아주대학교 교통시스템공학과)
  • Received : 2017.05.05
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

As the part of study which handles the measure to use the individual vehicle information of taxi GPS data on signal controls in order to overcome the limitation of Loop detector-based collecting methods of real-time signal control system, this paper conducted series of evaluations and improvements on link travel time, queue vehicle time estimates and traffic condition decision algorithm from the research introduced in 2016. considering the control group and the other, the link travel time has enhanced the travel time and the length of queue vehicle has enhanced the estimated model taking account of the traffic situation. It is analyzed that the accuracy of the average link travel time and the length of queue vehicle are respectably both approximately 95 % and 85%. The traffic condition decision algorithm reflected the improved travel speed and vehicle length. Smoothing was performed to determine the trend of the traffic situation and reduce the fluctuation of the data, and the algorithms have refined so as to reflect the pass period on overflow judgment criterion.

기존 실시간 신호제어시스템의 루프검지기 기반 수집체계의 한계를 극복하기 위해 실시간 택시 GPS 데이터를 신호제어에 활용할 수 있는 방안에 대한 연구의 일환으로, 본 논문은 2016년 발표한 링크평균통행시간과 대기차량길이의 추정 모형과 교통상황 판단 알고리즘에 대해 평과와 개선을 수행하였다. 링크평균통행시간은 연동그룹과 비연동그룹을 고려하여 평균통행시간을 고도화하였고, 대기차량길이는 교통상황을 고려하여 추정모형을 고도화 하였다. 링크평균통행시간의 정확도는 약 95%, 대기차량길이의 정확도는 약 85%로 분석되었다. 교통상황판단 알고리즘은 정확도가 향상된 통행속도와 대기차량길이를 반영하였다. 반영된 지표들의 변동을 줄이고 교통상황의 추세를 판단하기 위해 평활화를 수행하였으며, 과포화 상황 판단 기준에 통과주기를 반영하여 알고리즘을 고도화하였다.

Keywords

References

  1. Doh. T. W.(2012), "The theory of traffic engineering," chungmungak, pp.239-240.
  2. Ko. K. Y.(2015), "Status of smart signal control system development and future of intersection," TTA Journal, vol. 160, pp.44-45.
  3. Korean National Police Agency(2014), "Development of Signal control algorithm using big data on traffic information".
  4. Lee C. K., Lee S. D., Lee Y. J. and Lee S. J.(2016b), "A Traffic congestion judgement Algorithm development for signal control using taxi gps data," The Journal of the Korea Institute of Intelligent Transportation Systmes, vol. 15, no. 3, pp.51-59.
  5. Lee Y. J., Hwang J. S. and Lee C. K.(2016a), "Study on Queue length estimation using GPS trajectory data," The Journal of the Korea Institute of Intelligent Transportation Systmes, vol. 15, no. 3, pp.45-51. https://doi.org/10.12815/kits.2016.15.3.045
  6. Ministry of Land, Transport and Maritime Affairas(2013), "KHCM, Korea Highway Capacity Manual 2013," pp.209-417.

Cited by

  1. 딥러닝을 활용한 차량대기길이 추정모형 개발 vol.17, pp.2, 2017, https://doi.org/10.12815/kits.2018.17.2.39
  2. 프로브 수집 위치기반 도로위험정보 통합 및 판단 알고리즘 vol.17, pp.6, 2017, https://doi.org/10.12815/kits.2018.17.6.173
  3. GPS 운행궤적정보를 이용한 표준링크기반 통행속도 산출 시스템 연구 vol.18, pp.5, 2019, https://doi.org/10.12815/kits.2019.18.5.142