• Title/Summary/Keyword: 차량번호인식 시스템

검색결과 151건 처리시간 0.022초

차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템 (Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle)

  • 이응주
    • 한국멀티미디어학회논문지
    • /
    • 제7권1호
    • /
    • pp.35-43
    • /
    • 2004
  • 본 논문에서는 고속도로나 도심 진입 차량의 무인 자동과금 및 주요시설 출입 차량의 통제와 관리를 위하여 차량번호판 인식뿐만 아니라 차량 표시 문자와 제조사 식별자 검출 분류하여 차량의 정보를 판독하는 차량정보인식 및 자동과금시스템을 제안하였다. 제안한 알고리즘은 차량 후면부에서 획득된 영상으로부터 잡음제거, 세선화 등의 전처리 과정을 수행하고 템플릿 마스킹 및 레이블링 연산처리를 수행하여 차량표시문자, 제조사 표식자 및 번호판 영역을 각각 검출하였다. 또한, 검출된 특징 영역으로부터 특징자의 구조적 특징 및 패턴정보를 이용하여 표시문자와 제조사 표식자를 분류하였고, 하이브리드 패턴벡터와 세븐세그먼트 패턴벡터를 사용하여 차량번호판의 문자 및 숫자를 각각 인식하였다. 실험에서는 실제 고속도로상에서 제안한 차량인식 시스템에서 획득된 실 영상을 사용하여 인식 성능을 수행하였다. 실험 결과 제안한 알고리즘이 잡음, 외부환경, 차량의 크기에 무관하게 차량 특징자를 정확히 검출 분류하였으며 제안한 시스템은 범죄차량 단속, 차량자동과금 및 관공서 등의 차량입출력 관리의 무인화에 적용이 가능하다.

  • PDF

SVM을 이용한 실시간 차량 인식 기법 (Real-time Vehicle Recognition Mechanism using Support Vector Machines)

  • 장재건
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1160-1166
    • /
    • 2006
  • 혼잡한 현대의 교통 상황에서 교통질서를 유지하기 위해 차량에 대한 정보를 아는 것은 매우 중요한 일이다. 본 논문은 차량의 정보를 아는데 있어서 가장 중요한 차량 번호판을 인식하는 새로운 기법을 소개한다. 제안하는 기법은 물체를 분류하는데 있어서 다른 방법보다 우수하다고 알려진 SVM을 이용한다. 번호판 영역을 찾는데는 이중분류 SVM을 이용하고 번호판 문자 인식에서는 다중 분류 SVM을 이용한다. 여러 단계의 영상처리 과정과 인식 과정을 거쳐서 실시간에 처리할 수 있는 시스템으로 여러 종류의 차량 번호판에 대한 인식도 가능하게 한다. 제안한 기법을 이용한 실제적 환경에서의 영상과 인식에 대한 실험결과를 통하여 성능을 입증하였다.

  • PDF

다단계 영상처리 기법을 이용한 차량번호판 추출방법 (Vehicle License Plate Extraction using Multi-level Image Processing Methods)

  • 안운기;장재건
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.275-278
    • /
    • 2003
  • 자동차 번호판 인식 시스템은 영상획득, 번호판추출, 전처리(이진화), 문자영역 분할, 문자인식 등의 5가지 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식 시스템의 최종 인식율은 각 단계의 성능에 따라 직접적인 영향을 받는다. 본 논문은 영상처리 기법을 이용하여 영상에서 번호판 영역을 추출을 위한 연구로 문자인식 단계에서 높은 인식율을 확보할 수 있도록 빠른 연산속도와 추출 정확성을 높일 수 있는 알고리즘을 제안한다.

  • PDF

영상인식을 이용한 주차 관리 시스템 연구 (The study of Parking Management System by Image Processing)

  • 김건국;손웅기;이민규;한중구;박용욱
    • 한국전자통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.651-656
    • /
    • 2017
  • 본 연구에서는 효율적인 주차관리가 가능한 주차시스템을 연구하였다. 이 시스템은 영상을 인식하는 기능을 갖추고 있어 주차장 입구에서 주차공간에 대한 모든 정보를 확인하고 주차 가능한 공간을 찾는 데 도움을 줄 수 있고 또한 차량 번호판을 정확히 인식할 수 기능을 추가하였다. 그 밖에 웹캠을 차량 번호판에 더욱 가까이 설치하여 좀 더 빠르게 차량번호를 확인할 수 있도록 하였다. 마지막으로 주차관리 시스템에 웹캠을 높이 설치하여 주차 차량이 효율적으로 주차할 수 있도록 주차화면에 표시하게 하였다.

딥러닝 영상인식을 이용한 출입 차량 통계 시스템 개발 (Development of vehicle traffic statistics system using deep learning)

  • 문동호;황승혁;전한결;황수민;윤태진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.701-702
    • /
    • 2020
  • 본 논문에서는 Jetson-Nano와 데스크탑에서 OpenCV와 YOLOv3 실시간 객체 인식 알고리즘을 이용하여 웹캠을 통해 주차장 등의 출입 차량 인식 통계 시스템을 개발하였다. 최근 에지컴퓨팅에 관심이 증가하고 있는 시점에서 Nvidia사에서 개발하여 보급하고 있는 Jetson-Nano에 YOLOv3 tiny와 OpenCV를 이용하여 차량인식을 수행하고, 구글에서 개발한 오픈 소스 Tesseract-OCR을 이용해 차량번호인식하여 입출차 혹은 주차시 차량정보를 확인할 수 있다. 딥러닝 학습 알고리즘에서 전기차 번호판의 특징점을 인식하여 전기차를 판별하여 일반차량이 전기차 주차구역에 불법주차하는 것을 모니터링할 수도 있다. 출입한 차량 데이터 베이스에서 입출차 시각, 차량번호, 전기차여부등이 확인 가능하다.

  • PDF

형태학적 정보와 개선된 신경망을 이용한 차량 번호판 인식 (Car Plate Recognition using Morphological Information and Enhanced Neural Network)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.684-689
    • /
    • 2005
  • 본 논문에서는 수평$\cdot$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 신경망을 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평 수직에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ART-1 알고리즘을 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 실제 차량 번호판들을 대상으로 실험한 결과, 수평$GF(2^m)$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출룰이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들 보다 우수한 성능이 있음을 확인하였다.

기울어진 신규차량번호판 인식을 위한 FE-MCBP (The FE-MCBP for Recognition of the Tilted New-Type Vehicle License Plate)

  • 구건서
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.73-81
    • /
    • 2007
  • 본 논문은 문자의 특징을 추출하여 다중연결 인식기를 통해 신규 자동차 번호판을 인식하는 방법을 제안한다. 이를 위해 영상 전처리과정과 번호판 영역 추출을 위한 과정과 개별문자 추출 과정을 통해 얻어진 개별문자를 인식을 위해 FE-MCBP를 제안하였다. FE-MCBP는 차량 번호판처럼 한글과 숫자가 혼용된 문자열을 인식할 때는 문자의 특징을 기반으로 하는 인식기로서 기존 역전파 인식기에 비해 인식률 면에서 9.7%가 향상되었다. 아울러 기울어진 번호판 영상을 정규화하기 위하여 직선 성분 검출 및 영역 좌표 생성기술을 이용하였다. 시스템 운용 면에서 볼 때 신규차량번호판 인식 시스템은 번호판 영역이 기울진 영상도 인식이 가능하기 때문에 비스듬하게 획득된 번호판 영상이나, 훼손된 번호판의 경우도 인식이 가능한 것으로 연구결과 나타났다.

  • PDF

개선된 Fuzzy ART를 이용한 자동차 번호판 인식에 관한 연구 (Recognition System of a Car License Plate using a Fuzzy Networks)

  • 허남숙;임은경;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 춘계학술발표논문집
    • /
    • pp.174-177
    • /
    • 2000
  • 자동차 번호판 인식 시스템을 구현하기 위해서는 영상에서 번호판을 추출하는 영역과 추출된 번호판에서 각 문자의 숫자를 추출하는 영역, 마지막으로 이를 인식하는 영역으로 나누어진다. 본 논문에서는 번호판 영역이 다른 영역보다 녹색의 밀집도가 높다는 특징을 이용하여 이미지에서 번호판을 추출하고, 개선된 퍼지 ART학습 알고리즘으로 자동차 번호판 인식에 적용한다. 실험결과에서는 여러 차량에 대해 인식율이 우수한 것을 보인다.

  • PDF

공간상관거리를 이용한 차량 추적과 번호판 자동 인식 임베디드 시스템 구현 (Implementation of Embedded System for Vehicle Tracking and License Plates Recognition using Spatial Relative Distance)

  • 강진석;최연성;김장형
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.411-418
    • /
    • 2003
  • 본 논문에서는 모바일 단말기에 부착되어 있는 카메라를 통하여 입력되는 차량의 전, 후면의 번호판을 자동으로 인식, 검증하는 기술을 바탕으로 차량 번호를 검출하고 무선 통신망을 통해 원격 서버에 차량 번호와 모바일 단말기의 위치 정보를 함께 전송함으로써 어디에서든지 차량 조회 및 차량 위치 추적을 위한 시스템을 제안한다. 모바일 단말기에서 획득된 차량의 정보는 부호화되어 무선 통신망을 통하여 원격지의 서버로 전송된다. 원격지의 서버는 복호화 과정을 거쳐 전송된 텍스트 형식의 차량 번호와 위치 정보는 실시간 추정한 공간상관거리를 통하여 가용자의 위치를 측정하기 위해 공간정보와 속성 정보를 갖는 수치 값들 가운데 원하는 데이터 값에 가장 우선하는 특성 정보를 통해 적합한 위치를 추적이 가능한 임베디드형 이동 가능한 차량 번호판 인식 시스템을 구현한다.

퍼지 신경망을 이용한 자동차 번호판 인식 시스템 (Recognition System of Car License Plate using Fuzzy Neural Networks)

  • 김광백;조재현
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.313-319
    • /
    • 2007
  • 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드는 퍼지 신경망 알고리즘을 이용하여 인식한다. 차량 번호판 영역을 검출하기 위해 프리윗 마스크에 의해 수직 에지를 찾고, 차량 번호판에 관한 특성 정보를 이용하여 잡음을 제거한 추에 차량 번호판 영역과 개별 코드를 추출한다 추출된 개별 코드를 인식하기 위해 퍼지 신경망 알고리즘을 제안하고 인식에 적용한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고, 중간층과 출력층간의 학습 구조에는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.

  • PDF