• Title/Summary/Keyword: 질소산화물)

Search Result 902, Processing Time 0.021 seconds

Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses (CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.167-175
    • /
    • 2018
  • Natural gas is a clean fuel that discharges almost no air-contaminating substances. This study examined the simultaneous reduction of $CH_4$ and NOx of NGOC/LNT catalysts for CNG buses related to the improvement of the $de-CH_4/NOx$ performance, focusing mainly on identifying the additive catalysts, loading of the washcoat, stirring time, and types of substrates. The 3wt. % Ni-loaded NGOC generally exhibited superior $CH_4$ reduction performance through $CH_4$ conversion, because Ni is an alkaline, toxic oxide, and exerts a reducing effect on $CH_4$. A excessively small loading resulted in insufficient adsorption capacity of harmful gases, whereasa too high loading of washcoat caused clogging of the substrate cells. In addition, with the economic feasibility of catalysts considered, the appropriate amount of catalyst washcoat loading was estimated to be 124g/L. The NOx conversion rate of the NGOC/LNT catalysts stirred from $200^{\circ}C$ to $550^{\circ}C$ for 5 hours showed 10-15% better performance than the NGOC/LNT catalysts mixed for 2 hours over the entire temperature range. The NGOC/LNT catalysts exhibitedapproximately 20% higher $de-CH_4$ performance on the ceramic substrates than on the metal substrates.

Effect of fuel injection timing on the combustion and NOx emission characteristics in a single cylinder diesel engine applied with diesel fuel for naval vessel and biodiesel (함정용 디젤 연료와 바이오디젤 연료를 적용한 단기통 디젤엔진에서 연료분사시기가 연소 및 질소산화물 배출특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.681-687
    • /
    • 2014
  • The objective of this work presented here was focused on analysis of in-cylinder combustion characteristic, engine performance, and nitrogen oxides emission characteristic from marine gas oil for propulsion diesel engine of naval vessels and biodiesel with fuel injection timing in a single cylinder diesel engine. In addition, combustion process was analyzed with a high speed camera of marine gas oil and biodiesel fuel. Retarding the fuel injection timing from $BTDC25^{\circ}CA$ to $BTDC5^{\circ}CA$, in cylinder peak combustion pressure was gradually decreased, however, engine torque showed a tendency to increase. The highest nitrogen oxides level was measured at $BTDC15^{\circ}CA$, they were reduced at retarded and advanced condition on the basis of $BTDC15^{\circ}CA$. Comparing with combustion process of marine gas oil and biodiesel fuel at $BTDC5^{\circ}CA$, self-ignition timing of biodiesel fuel included oxygen content was faster than marine gas oil, however, a cautious observation indicates a slightly higher flame intensity for marin gas oil than biodiesel as a diffusion flame is developing.

Calculation of Greenhouse Gas and Air Pollutant Emission on Inter-regional Road Network Using ITS Information (지능형교통체계(ITS) 정보를 이용한 지역 간 도로의 온실가스 및 대기오염물질 배출량 산정)

  • Wu, Seung Kook;Kim, Youngkook;Park, Sangjo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • Conventionally, greenhouse gas (GHG) emissions in the transport sector have been estimated using the fuel consumption (i.e. Tier 1 method). However, the GHG emissions on road networks may not be practically estimated using the Tier 1 method because it is not practical to monitor fuel consumption on a road segment. Further, air pollutant emissions on a road may not be estimated efficiently by the Tier 1 method either due to the diverse characteristics of vehicles, such as travel speed, vehicle type, model year, fuel type, etc. Given these conditions, the goal of this study is to propose a Tier 3 level methodology to calculate $CO_2$ and $NO_X$ emissions on inter-regional roads using the information from ITS infrastructure. The methodology may avoid the under-estimation issue caused by the concavity of emission factor curves because the ITS speed or volume information is aggregated by a short time interval. The proposed methodology was applied to 4 road segments as a case study. The results show that the management of heavy vehicles' speed is important to control the $CO_2$ and $NO_X$ emissions on road networks.

Characteristics of Atmospheric Dry Deposition of Nitrogen-containing Compounds (대기 중 질소산화물의 건식침적 특성)

  • Yi, Seung-Muk;Han, Young-Ji;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.775-784
    • /
    • 2000
  • Nitrate dry deposition fluxes were directly measured using knife-leading-edge surrogate surface (KSS) covered with greased strips and a water surface sampler (WSS). The average gaseous flux ($8.3mg/m^2/day$) was much higher than the average particulate one ($3.0mg/m^2/day$). The best fit gas phase mass transfer coefficient (MTC) of $HNO_3$ was obtained by linear regression analysis between measured gaseous flux containing nitrogen compounds and measured ambient $HNO_3$ concentration. The result showed that the MTCs of $HNO_3$ were approximately two times higher than those of $SO_2$. Especially, during the ozone action day, measured gaseous fluxes containing nitrogen compounds were much higher than those ones calculated as the product of measured ambient $HNO_3$ concentration and gas phase MTC of $HNO_3$, which is calculated from MTC of $SO_2$ using Graham's diffusion law. This result indicated that other nitrogen compounds except $HNO_3$ contributed to gaseous flux containing nitrogen compounds into the water surface sampler. The theoretical calculations suggest the contributions of nitrous acid ($HNO_2$) and PAN to the gaseous dry deposition flux of nitrogen containing compounds to the WSS.

  • PDF

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.

Calcination Properties of Cement Raw Meal and Limestone with Oxidation/Reduction Condition (산화/환원 소성분위기에서 석회석 및 시멘트 원료물질의 소성거동 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.64-72
    • /
    • 2020
  • When the multi-stage combustion process is applied to the cement kiln to reduce nitrogen oxide emissions in the cement industry, oxidation/reduction section that can increase combustion efficiency by reducing NOx to NO and completely burning unburned materials is essential In this study, when applied the oxidation/reduction system of the cement kiln preheater and calciner, the optimal oxidation/reduction calcination crisis that can secure the quality stability of the final product, cement clinker, was to be observed macroscopically, and the mass change of raw materials according to the burning conditions, decarbonation rate, and calcination rate were investigated. The results showed that the thermal decomposition of raw materials tends to be promoted in the oxidation condition rather than in the reduction condition, and that the thermal decomposition of limestone, which has a relatively high CaO content, is carried out later than that of cement raw meal, which is thought to be caused by the CO2 fractionation in the kiln. The thermal decomposition properties of raw materials according to oxidation/reducing burning condition showed a relatively large difference in temperature range lower than normal limestone themal decomposition temperature, which is thought to be expected to improve the thermal efficiency of raw materials according to the formation of oxidation condition in the section 750℃ of burning temperature. However, for this study, lab scale. Because there is a difference from the field process as a scale study, it is deemed necessary to verify the actual test results of the pilot scale.

Combustion Characteristics of Bio Emulsion Fuel (바이오에멀젼 연료의 연소 특성)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1421-1432
    • /
    • 2018
  • Water soluble oil was obtained from the pyrolysis of coconut waste as a biomass at $600^{\circ}C$. It was studied that the combustion characteristics of bio-emulsion fuel by mixing and emulsifying 15~20% of water soluble oil which obtained from pyrolysis of coconut waste as a biomass and MDO(marine diesel oil) as a marine fuel. Engine dynamometer was used for detecting emissions, temperature, and power. The temperature of combustion chamber was decreased because the moisture in bio-emulsion fuel deprived of heat of evaporation in combustion chamber. While combustion, micro-explosion took place in the combustion chamber by water in the bio-emulsion fuel, MDO fuel scattered to micro particles and it caused to smoke reduction. The temperature reduction of combustion chamber by using bio-emulsion fuel reduced the NOx emission. The increasing of bio-oil content caused increasing water content in bio-emulsion fuel so total calorific value was reduced. So the characteristics of power was decreased in proportion to using the increasing amount of bio-emulsion fuel. Heavy oil as a marine fuel exhausts a lot of smoke and NOx. We expect that we can reduce the exhaust gas of marine engine such as smoke and NOx by using of bio-emulsion fuel as a marine fuel.

Evaluation of Oxidation Inhibition and Nitrogen Oxide Scavenging Activity from Curcuma longa L. Extracts (울금(Curcuma longa L.) 추출물의 산화억제 및 질소산화물 소거활성)

  • Oh, Da-Young;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • The aim of the present investigation was to assess the oxidation inhibition by nitrogen oxide scavenging activity and physiological activities. Bioactive compound of proanthocyanidin $69.000{\pm}2.737mg$ catechin equivalents (CE)/g dry weight. Antioxidant effects (nitric oxide radical scavenging activity, nitrite scavenging activity, ${\beta}$-carotene bleaching assay and lipid peroxidation inhibition activity) of distilled water (DW), 70% ethanol and n-butanol extract of turmeric (Curcuma longa L.). Turmeric extracts yield were DW 17.11%, 70% ethanol 15.26% and n-butanol 4.12%, respectively. Oxidation inhibition activity of the samples exhibited a dose-dependent increase. However, in the current study, none of the samples evaluated showed activity as strong as the BHA and trolox. Total flavonoid content was the highest in the n-butanol extract, followed by 70% ethanol and DW extract. Further, nitrite scavenging activity was the highest for the n-butanol extract. As a result of this experiment, the turmeric can be utilized as a valuable and potential natural oxidation inhibition for the functional food industry.

The Fuel Effect for VOCs exhausted from vehicle (자동차배출 VOCs의 연료영향에 관한 연구)

  • 류정호;엄명도;임철수;유영숙;선우영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.333-334
    • /
    • 2003
  • 자동차로 인한 대기오염은 규제물질 뿐만 아니라 많은 미량유해물질들에 크게 기여하고 있다. 이러한 자동차 배출가스들은 1차 대기오염물질로 배출되기도 하지만 그중 탄화수소나 질소산화물 등은 대기중 광산화반응을 거쳐 2차 오염물질 생성에 관여하여 더 심화된 대기질 저하에 기인하고 있다. 이처럼 자동차에서 배출되는 탄화수소류에 포함되어 있는 VOCs는 이러한 2차 오염물질로 생성되는 성분중 오존에 긴밀히 관여하여 인체 등에 미치는 영향이 크기 때문에 VOCs 저감을 위한 여러 가지 방안들이 고려되고 있다. (중략)

  • PDF