• Title/Summary/Keyword: 지하 댐퍼

Search Result 10, Processing Time 0.02 seconds

A Study on the Correlation between Inflowing Air Discharge and Smoke Control Performance through TAB (TAB를 통한 유입공기 배출과 제연성능 상관관계 연구)

  • Lee, Hye-Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.215-216
    • /
    • 2022
  • 유입된 공기가 배출될 때 중앙코어형 건축물이나 지하층처럼 밀폐된 공간의 경우 옥내에 부압이 형성되며 제연구역과 과도한 압력차이로 출입문 개방에 필요한 힘을 초과하는 등 많은 문제들을 야기할 수 있다. 유입공기 배출댐퍼가 적용된 ◯◯오피스텔을 사례로 실제 TAB(Testing, Aejuwting, Balancing)를 수행하여 유입공기 배출에 따른 영향과 제연성능의 개선방안을 알아보고자 하였다. 유입공기 배출댐퍼를 순차적으로 개방해 가며 차압 및 방연풍속 등의 변화를 기록한 결과 밀폐된 복도에서 유입 공기 배출댐퍼가 개방되면 복도에 부압이 형성되고 제연구역에 과도한 압력이 발생하여 출입문 개방에 필요한 힘을 초과하였다. 유입공기 배출댐퍼 개방 층수를 증가시켜 TAB를 수행한 결과 3개층 까지 개방하여도 방연풍속이 확보되었다.

  • PDF

Neuro-Control of Seismically Excited Base-Isolated Benchmark Structure using MR Damper (MR댐퍼를 이용한 지진하중을 받는 지진격리 벤치마크 구조물의 신경망제어)

  • Lee, Heon-Jae;Cho, Sang-Won;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.463-470
    • /
    • 2006
  • 이 논문에서는 신경망 제어기와 MR 댐퍼를 이용하여 지진하중을 받는 지진격리 벤치마크 구조물의 응답 감소를 위한 반능동 제어방법이 제안되었다. 제안방법 중 신경망 제어기에는 적절한 제어력을 산출하기 위해 가격함수를 기반으로한 학습 알고리즘과 간편한 민감도 계산기법이 도입되었다. MR 댐퍼가 계산되어진 제어력과 비슷한 제어력을 낼 수 있도록 clipped 알고리즘을 이용하였고, 제안된 반능동 신경망 제어방법이 지진격리 장치가 설치된 벤치마크 구조물에 적용되었다. 수치해석에서는 벤치마크 문제를 정의한 논문에서 제공된 수동제어방법이나 예시제어방법과 제안 방법의 제어성능을 비교하였다. 수치해석 결과 제안방법은 지하 변위를 약간 증가시키지만, 각층의 가속도, base shear, building corner drift 등을 매우 효과적으로 줄이는 것으로 판명되었다.

  • PDF

A study on the effect of air velocity through a damper on smoke extraction performance in case of fire in road tunnels (도로터널 화재 시 집중배기방식의 배기포트 통과풍속이 배연성능에 미치는 영향에 관한 연구)

  • Ryu, Ji-Oh;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.347-365
    • /
    • 2020
  • In order to resolve traffic problems in urban areas and to increase the area of green spaces, tunnels in downtown areas are being increased. Additionally, the application of large port smoke extraction ventilation systems is increasing as a countermeasure to smoke extraction ventilation for tunnels with high potential for traffic congestion. It is known that the smoke extraction performance of the large port smoke extraction system is influenced not only by the amount of the extraction flow rate, but also by various factors such as the shape of the extraction port (damper) and the extraction air velocity through a damper. Therefore, in this study, the design standards and installation status of each country were investigated. When the extraction air flow rate was the same, the smoke extraction performance according to the size of the damper was numerically simulated in terms of smoke propagation distance, compared and evaluated, and the following results were obtained. As the cross-sectional area of the smoke damper increases, the extraction flow rate is concentrated in the damper close to the extraction fan, and the smoke extraction rate of the damper in downstream decreases, thereby increasing the smoke propagation distance on the downstream side. In order to prevent such a phenomenon, it is necessary to reduce the cross-sectional area of the smoke damper and increase the velocity of passing air through the damper so that the pressure loss passing through the damper increases, thereby reducing the non-uniformity of smoke extraction flow rate in the extraction section. In this analysis, it was found that when the interval distance of the extraction damper was 50 m, the air velocity passing through damper was 4.4 m/s or more, and when the interval distance of the extraction dampers was 100 m, the air velocity passing through damper was greater than 4.84 m/s, it was found to be advantageous to ensure smoke extraction performance.

공동주택에 설치된 소화 및 제연시스템에 관한 화재연동 실태분석

  • Gang, Won-Seon;Son, Bong-Se;Jeong, Jong-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.161-162
    • /
    • 2013
  • 최근에 신축되는 주상복합건축물이나 대단위 아파트단지는 지상층에서 보면 각각이 독립되어 있는 별도의 소방대상물로 보이지만, 실제로는 지하층을 통하여 연결된 하나의 소방대상물이다. 이러한 건물의 지하층에서 화재가 발생하면 열이나 연기가 다른 동으로 확산되어 피해가 커질 수 있으며, 특정동의 소방펌프에서 고장이 발생하거나 우발적인 선로합선 등으로 인하여 수신기에 이상이 발생하면 전체 동에 설치된 소방시설이 정상적으로 작동되지 않는 경우가 발생하게 된다. 화재감지기의 신호에 따라 작동되는 제연댐퍼, 준비작동식 스프링 클러설비 등이 수신기에서 연동되는 과정을 인천송도에 위치한 글로벌주상복합 단지를 토대로 하여 소화 및 제연설비의 연동실태를 분석하였다.

  • PDF

Study of the Smoke Extraction Efficiency Improvement by the Partial Smoke Extraction System in Tunnel Fire (터널화재시 부분배연설비에 의한 배연효율 향상에 관한 연구)

  • Yoo, Yong-ho;Lee, Eui-ju;Shin, Hyun-jun;Shin, Han-cho|;Yoon, Young-hoon;Kim, Chang-whan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.53-63
    • /
    • 2006
  • The objective of this study is to analyze the smoke movement and the smoke extraction efficiency using by the partial extraction system for case of tunnel fire. Based on Froude modeling and isothermal model, the 1/20 scaled model tunnel (12m long) was constructed. In the case of the upper critical velocity in the main tunnel, the smoke extraction efficiency shows almost same between group damper and distributed damper. Finally, if the fire occurs on a traffic Jam in a tunnel, it is proposed that the open dampers in partial gallery extract smoke from the main tunnel without jet fan operation. Then, after the passengers have escaped the tunnel, the jet fans work on. On the other hand, If the traffic is uncongested in the tunnel, the jet fans (smoke control system) and partial extraction system (smoke exhaust system) are operated at once in tunnel fire.

  • PDF

The Ventilation Plane Due to Smoke Driving Combined Forces in Super High-Rise Buildings (초고층 건물에서 연기이동 복합력에 의한 환기계획)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.82-87
    • /
    • 2016
  • The ventilation system for the efficient operation of the building services systems in the ventilation plan of super high-rise buildings is used to combine smoke control systems. This study evaluated models of super high-rise buildings with four basement levels and 59 stories and investigated the pressure distribution of each floor by the smoke driving forces by numerical analysis. The smoke driving forces on the building of analytical model was analyzed to determine the effects of the ventilation plan and smoke control plane. In addition, when a combination with ventilation and smoke control of the kitchen ventilation damper in the ventilation plan of analysis model building was designed based on the these results, the relationship between the opening and closing force of the damper and smoke driving combined forces to act on the design pressure of the damper by a motion analysis simulation. The driving units of the damper were selected from the analytical results.

A Performance Evaluation of Zone Smoke Control Systems for Railway Underground Transit Passage by Smoke Control TAB (제연 TAB를 통한 철도 지하환승통로의 거실제연설비 성능평가)

  • Seol, Seok-Kyun;Kim, Joon-Hwan;Park, Min-Seok;Oh, Seung-Min;Ahn, Yong-Chul;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study conducted Testing, Adjusting, and Balancing (TAB), which is a type of field performance evaluation experiment of a zone smoke-control system, at a railway underground transit passage installed with a zone smoke- control system to find problems and improvements for ensuring performance. TAB for the smoke control system was classified into several procedures, such as design data review, duct leakage test, field measurement of the airflow rate, velocity of the fan and duct, and a smoke test. Through the duct leakage test, the system leakage ratio was examined to prove the duct sealing. The iImprovement of the smoke control airflow problems due to the lack of fan static pressure loss was the secured performance. The performance of the smoke control fan was secured by improvements of the smoke control airflow rate problems caused by the loss of static pressure in the intake duct. The smoke test in the smoke control zone confirmed that the damper operating schedule subject was influenced by natural wind or train wind.

Retraction: A numerical study on the fire smoke behavior by operating the fire prevention system in tunnel-type structure (논문 취소: 터널형 구조물의 방재시설 가동에 따른 화재연기 거동에 관한 수치 해석적 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Lee, Sang-Don;Heo, Won-Ho;Jo, Jong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.189-199
    • /
    • 2019
  • In this study, behaviors of fire smoke in the operation of disaster prevention facilities (smoke damper, jet fan) in a tunnel-type structure (soundproof tunnel) were investigated numerically and results of the investigation were compared and analyzed. Through the simulation and analysis, it was found that there was a significant change in the patterns of fire smoke between the opening of the ceiling of a fire vehicle and the closing, and it was shown that the critical temperatures of PC and PMMA, main materials of a soundproof tunnel were not exceeded. In addition, the simulation of installation intervals of smoke dampers showed that the maximum temperature of a soundproof tunnel without smoke dampers was $552^{\circ}C$ while it reached $405^{\circ}C$ when smoke dampers were installed at the installation interval of 50 m. The simulation of the operation of a jet fan showed that the maximum temperature of a soundproof tunnel without a jet fan was $549^{\circ}C$ while it reached only $86^{\circ}C$ when a jet fan was operating. Therefore, it is highly expected that they could create a favorable environment for evacuation and protection of soundproofing materials, and it would be necessary to promote basic studies on tunnels serving various functions and purposes.

Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses (초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가)

  • Kim, Young-Bae;Kim, Jae-Hong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.