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ABSTRACT

o] mEoAE A4% Aojriek MR BHE ol &8t ARFE we ANAY WAvtd 72
2o ¢9 ZAE 9% wsF Aoldol ATk AEH F AR Arlde HAAG A
olglg A&ty Yl NAFSFE e s LndFy FAHT UPE Adribel =9H
Atk MR ®3)7} Aasold Aoid st vl Aojd g 3 & AEF clipped dnHFE o}83}
A, AtE wsE A7 Mool AN AAs AAd wWAeA FREN HEHA
FRAHYoAE WAtz FAS FoF oA Agd FEAPTHG dAlAoEE A
o] AojAdsg Blmstach. R84 A7 Adge Aa WAE A FTIIAR, A4S
9] 7}4 %, base shear, building corner drift & "¢ &#H o8 Fole Aoz FHHAH

1. Introduction

One of the most widely implemented and accepted seismic protection systems is
base isolation. Seismic base isolation (Skinner et al. 1993; Naeim and Kelly 1899) is a
technique that mitigates the effects of an earthquake by essentially isolating the
structure and its contents from potentially dangerous ground motion, especially in the
frequency range where the building is most affected.

In base isolation systems, nonlinear devices such as lead-rubber bearings, friction
pendulum bearings, or high damping rubber bearings are often used. The benefit of
these types of bearings is that the restoring force and adequate damping capacity can
be obtained in one device. However, because the dynamic characteristics of these
devices are strongly nonlinear, the vibration reduction is not optimal for a wide range
of input ground motion intensities, especially those strong impulsive ground motions
generated at near—source locations (Hall et al. 1995; Heaton et al. 1995).

Seeking to develop isolation systems that can be effective for a wide range of
ground excitations, hybrid control strategies, consisting of a passive isolation system
combined with actively controlled actuators, have been investigated by a number of
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researchers (e.g., Kelly et al. 1987, Inaudi and Kelly 1990; Nagarajaiah et al. 1993;
Yang et al. 1996; Nishimura and Kojima 1998). One of the hybrid base isolation
systems employs semiactive control devices, such as magnetorheological (MR)
dampers (Spencer et al. 1997, Yang et al. 2002, 2004). Semiactive systems have
gained significant attentions in recent years because these systems have the
capability of adapting to changes in external loading conditions, similar to the active
protective system, but without requiring access to large power supplies. Some
researchers have applied these devices both analytically and experimentally to
develop semiactive base isolation systems (Johnson et al. 1999; Ramallo et al.
2000a,b; Yang and Agrawal 2001). Saharabudhe et al. (2005) experimentally showed
the effectiveness of semiactive base isolation for a single span bridge model using
MR dampers.

In this paper, an improved semi-active nerual network-based controller (Kim and
Lee 2001, Lee et al. 2003) in conjunction with MR dampers is employed in vibration
reduction of a base-isolated benchmark structure proposed by Narasimhan et al.
(2005). In the proposed neuro-controller, which was developed by employing a new
training algorithm based on a cost function and a sensitivity evaluation algorithm to
replace an emulator neural network, produces the desired control force, and then a
clipped algorithm clips the control force that cannot be achieved by an MR damper.
Numerical simulation results are compared with passive and sampler controller results
provided by Nagarajaiah and Narasimhan (2005) and show that the proposed
semi-active neurocontroller is effective in reducing the vibration of the base-isolated
benchmark structure.

2. Benchmark Structure

The benchmark structure is a base-isolated eight-story, steel-braced framed building,
82.4-m long and 54.3-m wide, similar to existing buildings in Los Angeles, California,
The superstructure and the base are modeled using three master degrees of freedom
(DOF) per floor at the center of mass. The combined model of the superstructure (24
DOFs) and isolation system (3 DOFs) consists of 27 degrees of freedom. The nominal
isolation system consists of both friction pendulu bearings and linear elastometric
bearings. However, in this paper, we only considered the linear elastomeric isolation
system which consists of 92 bearings installed between the structural base and
foundation. In addition, total of 16 MR dampers (8 along the x-—axis and 8 along the
y-axis) are also installed with the isolation system for semi-active vibration control of
the structure. For details on mathematical modeling of the benchmark structure,
interesting readers can refer to the paper written by Narasimhan et al, (2005).

3.. Semiactive Neuro-Controller

The neural network approach for structural vibration control was first proposed by
Ghaboussi and Joghataie (1995) and Chen et al. (1995). They used the so-called emulator
neural network for the identification of the structural system and trained controller neural
network by means of the emulator neural network. Another training method was proposed
by Kim and Lee (2001) using a kind of cost function. Therefore, one does not have to
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preset the desired structural response to train a neural network. In addition, Kim and Lee
also proposed an off-line sensitivity evaluation scheme to replace the emulator neural
network which is used on-line to predict structural response sensitivity. As a result, the
required effort to train the emulator neural network can be eliminated.

To applythe neuro-control algorithm to semi-active devices (e.g. MR dampers), Lee et
al. (2003) proposed a semi-active neuro-control system. The block diagram is shown in
Figure 1. The control system, in addition to the neuro-controller, consists of a clipped
algorithm. In this approach, the neuro-controller first calculates the optimal control force.
To induce the MR damper to generate approximately the desired optimal control force, a

clipped algorithm (Dyke et al. 1996) is then employed to select the input voltage to the
MR damper, which is defined as

v =V H{(f, - 1)1} ()
where V.. 1is the voltage to the current driver associated with saturation of the
magnetic field in the MR damper, and /() is the Heaviside step function. For the clipped
algorithm, when the MR damper is providing the desired optimal force (i.e., f=f,), the
voltage applied to the damper should remain at the present level. If the magnitude of the
force produced by the damper is smaller than the magnitude of the desired optimal force
and the two forces have the same sign, the voltage applied to the current driver is
increased to the maximum level so as to increase the force produced by the damper to
match the desired control force. Otherwise, the commanded voltage is set to zero. This
control algorithm has the benefit that a model of the damper is not required in the
control design, although the model is important for system analysis.

Xg
STRUCTURE >
* 3 MR DAMPER |- Responses
CLIPPED CONTROLLER
ALGORITHM ¢ 7 (Neural Network)

Fig. 1. Block diagram of semi-active neuro-control system using MR damper

4, Neuro-Controller Training Algorithm

The training of nerual work is based on the minimization of a cost function. The cost
function defined in discrete~time domain is expressed by

1°& 1
% T T
J=— Z{kakaH + Uy R”k}z_
23 2.5 @)
where y{nx1) and w(mx1) are specific states and control signals: Q(nxn) and
R(mxm) are weighting matrices; k and N; are sampling number and total number of

sampling time. Each term in braces of Eq. (2) is non-dimensionalized by weighting
matrices Q and R.
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The update of weights AWﬁ and biases Abf between the output layer and hidden

layer can be simply expressed as
1 20T
AW =y {0:} 3)

abj =y @

where
a ’
vt= —n[yLlQ{M} +uy R{l}](f 2)

ou, (%

and 7, 8y,,./6u,, {1}, f* are learning rate, sensitivity, mx1 unit vector and activation
function of the output layer, respectively. By varying the learning rate u, the
convergence of training can be improved. However, if the learning rate is too large,
training may become unstable.

In the same manner, update of weights AW,, and biases Abl between hidden layer

and input layer can be obtained by

AW, =y {1} ©
Ab] =y %)

and
y' = {{W,% }'wz}- (r) (8)

where e is the net product.

In updating the weights and biases of neural network, there are many coefficients
need to be selected by experience or trial and error. Learning rate, training acceleration
factors, ending condition, and weighting matrices for cost function should be appropriately
selected so that the results of updating converge. If cost function during an epoch
decreases compared with that of previous epoch, a larger learning rate n will be used to
accelerate the training of neural network. In contrast, if the cost function increases, a
smaller learning rate will be utilized to improve the training procedure. The rates of
increasing or decreasing learning rate are called training acceleration factors. When the
learning rate becomes very small, the training will be stopped as the cost function
converges.

Because feedback signals to the neural network is relatively large in this specific
benchmark problem, the learning rate should be small enough, which was chosen as

5x10"7. For training acceleration factor, 1.05 and 0.1 are employed, respectively.
Training is repeated until the number of epochs reaches 100 or the learning rate is less
than 1x107'". Figure 2 shows the cost function versus epochs for the proposed
semi-active neuro—controller. As can be seen, the cost functionconverges in both x and
y-directions of the benchmark structure, which means the training is successful.

An artificial filtered earthquake record (shown in Fig. 3) was employed to train the
neuro—controller. The magnitude of this earthquake record was scaled to match the
maximum acceleration (8.58 m/sec2) of the Sylmar earthquake FN component. The
shaping filter employed is as follows (Nagarajaiah and Narasimhan 2005)
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F(s) =

where w, = 27 rad/sec, ¢, =0.3.
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Fig. 2. Cost function vs. epoch in Fig. 3. Artificial earthquake record used for
both x and y-—directions training of neuro-controller

5. Sensitivity Evaluation

In updating the weights of neural network, response sensitivity to control signal is
required in Eq. (5). In the discrete time domain with a zero-order approximation, the
sensitivity can be expressed as follows

{gy,‘;l}(eﬂxq){llg

Ou, (10)

where 7, is sampling time step (Kim et al. 2000). Although the sensitivity matrix has the

mathematical form, it can be easily found by unit impulse test by assuming the system
matrices A and B are unknown. When the sampling step is 0.005 s, the sensitivity of the
base-isolated structure can be found as Table 1.

Table 1. Numerical results under El Centro earthquake

Direction Oag / Oy Oa, /Oy od, / oy
X -3.50x107* -4.78x107" -1.90x107°
y -5.40%x107* -4.80x107" ~2.61x107¢

6. Performance Evaluation

To design a neuro-controller, it is important to decide the structure of neural
network, Because the superstructure and the base of the benchmark building are modeled
using three master degrees of freedom (DOF) per floor at the center of mass, two
neuro~controllers are employed for x and y-directions, respectively. Each
neuro-controller has three layers: input layer, hidden layer and output layer. The input
layer has five nodes; each node is connected to a feedback signal (building response)
that are available for direct measurement. Building responses that can be directly
measured include the absolute accelerations at the center of mass of all floor levels and

the base, the absolute accelerations and displacements at all device locations, and ground
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accelerations. For the controller design reported herein, feedback signals of
neuro—controllers at each translational direction consist of base displacement and
acceleration, ground excitation, acceleration at the eighth floor, and acceleration at the
device location which has the largest acceleration among eight con trol devices under
uncontrolled case., The hidden layer has eight nodes and the output layer has only one
node that generates desired control force. Moreover, the sigmoid function is used as the
activation function for the hidden layer and the linear function is employed for the output
layer.

For the cost function, eighth floor acceleration, base acceleration and displacement
are included. This is because the evaluation criteria J;, J,, J5, J; are directly related
with the accelerations of the eighth floor and base, and J;, J; are also related with the

base displacement. After trial and error, the optimal weighting matrices was chosen as:
Q = diag(0.1,0.1,0.001), r=10"" (11)

Moreover, sensor gains for accelerometers are (10/9.81) V/(m/sec2), gain for
displacement sensors are 10 V/m, and the load cell sensor gains are (10/2200) V/kN,
The sensor measurements are assumed to have identically distributed RMS noise of 0.14
V and are modeled as Gaussian rectangular pulse processes with a pulse width of 0.005
seconds.

The results of the evaluations for the proposed semi-active neuro-controller with linear
elastomeric isolation system are presented in Tables 2 and 3 along with their
comparisons with those of passive and sample controller results provided by Nagarajaiah
and Narasimhan (2005). The results were obtained for the fault normal (FN) component
and the fault parallel (FP) acting in two perpendicular directions and were evaluated in
terms of the . performance indices defined in the base-isolated benchmark paper
(Narasimhan et al. 2005). The semi-active force is applied to the base of the structure
by sixteen MR dampers, eight in the x-direction and eight in the y-direction. Figure 5
shows the eighth floor time history response under the FP and FN components Sylmar
earthquake which are acting on the x and y-axis of the benchmark building.

As shown in Tables 2 and 3, the proposed neuro-control scheme significantly reduces
the floor acceleration. However, this is at the cost of slight increase of the base
displacement. Note that, under Jiji and Ranadi earthquakes, the peak floor accelerations
(J;) and peak base and floor shear (J, and J,) were worse than the passive control. This
is caused by some local peaks of the acceleration. However, if one looks at the RMS
floor acceleration (J;), the proposed controller still performs better than the passive
control and has further improvement over the sample controller in some cases.

The corner drift results are provided in Table 4. For all cases except for the FN-X
subject to the Iliji earthquake, the proposed neuro—-controller demonstrates better
performance than that of passive control and sample controller. For the Newhall, El
Centro and Kobe earthquake, the corner drifts of passive and sample controller are
worse than the uncontrolled case. However, the proposed controller still exhibits better
performance comparing with the uncontrolled structure.

7. Conclusion

In this paper, a new semiactive control strategy for seismic response reduction using
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neuro-controller and MR dampers is proposed. The proposed control system adopts a
training algorithm based on a cost function and sensitivity evaluation algorithm to
calculate the desired control force. With this new training algorithm, one does not need
to preset the desire structural response and the required effort to train the emulator
neural network can be eliminated. A clipped algorithm is then employed to induce the MR
damper to generate approximately the desired control force by selecting appropriate
command voltage. The proposed semi-active neuro-controller was applied to a
benchmark building installed with linear elastomeric isolation system. Comparing with that
of passive and sample controller, numerical simulation results have shown that the
proposed scheme can significantly reduce the floor accleration, base shear and building
corner drift with only a slight increase of the base displacement.
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Fig. 5. Performance of the neuro-controller under Sylmar earthquake (FP-X, FN-Y)

Table 2. Results of neuro-controller for linear isolation system (FP-X, FN-Y)
Newhall Sylmar El Centro Rinaldi Kobe Jijt Erzinkan
Pas, | Clip. | Pro. | Pas. | Clip. | Pro. | Pas. | Clip. { Pro. | Pas. | Clip. | Pro. | Pas. | Clip. | Pro. | Pas. | Clip. { Pro. j Pas. | Clip. | Pro.
Jl 00917097 1091]090]0.9010.8310.7311.25]0.7410.95]1.05]0.9370.84[1.04]0.7010.8310.8410.80)0.94{0.93)|0.84

J2 0.9511.021091]0.9210.91108540.8711.2310.7410.9611.0210.9310.81}1.0310.724082{0.8410.80{0.9510.93}0.80

.]3 0.5110.5610.7210.66]0.73]10.76}0.14 | 0.54 | 0.36 | 0.50 | 0.60 | 0.65 10.36 ] 0.52 1 0.46 } 0.65 ] 0.65 | 0.80{0.49 1047 | 0.56

J4 13011041086 |0.81)10.8710.7511.2211.26]0.66}0.97]0.9710.9211.19]0.99]0.72}10.8610.360.92]0.8510.36|0.72

5 1249101491 1.140 1491 116108712851 16111551 1.1211.0311.4112.3411.6311.5810.92]0870.95]1.2111.23)|0.88

'](j 0.34]0.30]0.30]0.25[0.24|0.24 } 0.67]0.38 {0.530.29|0.27{0.26 {0.39[0.28]0.370.17 1 0.17 | 0.16 ] 0.26} 0.25 | 0.25

J7 0.2510.33]045]0.40[0.45|0.5540.0910.4110.2210.27]0.38]04210.16;0.26]0.340.42|0.46|0.57]0.32}0.34|0.47

Jg 1.0710.8010.7390.82]0.7410.67}1.610.76]0.70}0.83]0.7210.61 }1.14}0.73}0.5710.82]0.7210.75 ) 0.60 } 0.63 } 0.564

Jg 0.8910.79]0.7510.860.81]0.72]0.82]0.65]0.82{0.86|0.77]0.71[0.87[0.73]0.74} 0.70 | 0.64 | 0.55 ] 0.87 | 0.80 {1 0.71

* Pas, : Passive, Clip. : Clipped optimal, Pro. : Proposed
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Table 3. Results of neuro-controller for linear isolation system (FN-X, FP-Y)

Newhali Sylmar El Centro Rinaldi Kobe Jiji Erzinkan
Pas. | Clip.{ Pro. | Pas. [ Clip. | Pro. | Pas, | Clip. | Pro. | Pas. | Clip. ! Pro. | Pas. { Clip. | Pro. { Pas. | Clip. { Pro. | Pas. | Clip. | Pro.
J; 10.83{0.88(0.80]0.79]0.81]0.72|0.73|1.26| 0.78] 0.88 | 0.98 | 0.84 | 0.96 | 1.15{0.91]0.74 | 0.74 [ 0.82 | 0.85| 0.85 ] 0.76
J2 0.92(0.92(0.82]0.78|0.79{0.740.93)1.25{0.78{0.93{1.01 | 0.90| 1.00 | 1.2010.91{0.74 | 0.73 | 0.81 § 0.85}0.84 { 0.76
J3 0.51]0.55|0.65)0.68|0.74 | 0.75]0.19[0.65|0.54 ] 0.53 | 0.62 | 0.64 ] 0.40 | 0.53 | 0.51 0.63|0.63}0.7710.51{0.51| 0,56
J4 1.32|1.2410.8210.80|0.79|0.802.18]1.41|0.97]0.93(0.99{0.96[1.30|1.33{0.99}0.740.730.78 }0.95 | 0.88 | 0.77
1.86}1.40)1.161.25)0.92}0.84 }3.46|1.93/1.99)1.12]1.02]0.98}2.24]1.48}1.27/0.77]0.80)0.80§1.13|1.16]0.82
J(i 0.3410.30|0.33]0.25{0.2310.25)0.69|0.37 | 0.51{0.28 | 0.26 { 0.26 | 0.41 | 0.300.37]0.71| 0.17 | 0.14 | 0.25}0.24 | 0.25
J7 10.33(0.42(0.55{0.46[0.51|0.5510.12{0.450.29}0.24 | 0.30 | 0.39{ 0.20 | 0.38 | 0.37 [ 0.40 | 0.46 | 0.590.29{0.32 | 0.42
Js 1.0510.84|0.73)10.67|0.61|0.564]1.99]0.92]0.94{0.58(0.47|0.43}1.44{0.98|0.880.74}0.61|0.68}0.48 |0.52|0.46

Jg 0.88]0.79[0.75(085(0.81[0.70§0.81(0.70|0.82087[0.7810.71 }0.87{0.7110.74(0.70 [ 0.64 | 0.53{0.87{0.78{0.73
* Pas. : Passive, Clip. : Clipped optimal, Pro. : Proposed

Table 4. Results for corner drifts normalized by uncontrolled values

Passive Clipped Optimal Proposed

FP-X FN-X FP-X FN-X FP-X FN-X
Newhall 150 1.21 1.28 1.11 1.01 0.74
Sylmar 0.76 0.86 0.96 0.90 0.75 0.71
El Centro 1.10 2.06 093 1.30 0.57 0.91
Rinaldi 0.91 0.89 0.89 0.93 0.84 0.94
Kobe 1.22 1.06 1.07 1.10 0.80 0.85
Jiji 0.80 0.96 0.78 0.92 0.77 1.01
Erzinkan 0.72 0.90 0.73 0.94 0.65 0.74
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