New results about the crustal structure down to a depth of 60 km beneath North Korea were obtained using the seismic tomography method. About 1013 P- and S-wave travel times from local earthquakes recorded by the Korean stations and the vicinity were used in the research. All earthquakes were relocated on the basis of an algorithm proposed in this study. Parameterization of the velocity structure is realized with a set of nodes distributed in the study volume according to the ray density. 120 nodes located at four depth levels were used to obtain the resulting P- and S-wave velocity structures. As a result, it is found that P- and S-wave velocity anomalies of the Rangnim Massif at depth of 8 km are high and low, respectively, whereas those of the Pyongnam Basin are low up to 24 km. It indicates that the Rangnim Massif contains Archean-early Lower Proterozoic Massif foldings with many faults and fractures which may be saturated with underground water and/or hot springs. On the other hand, the Pyongyang-Sariwon in the Pyongnam Basin is an intraplatform depression which was filled with sediments for the motion of the Upper Proterozoic, Silurian and Upper Paleozoic, and Lower Mesozoic origin. In particular, the high P- and S-wave velocity anomalies are observed at depth of 8, 16, and 24 km beneath Mt. Backdu, indicating that they may be the shallow conduits of the solidified magma bodies, while the low P-and S-wave velocity anomalies at depth of 38 km must be related with the magma chamber of low velocity bodies with partial melting. We also found the Moho discontinuities beneath the Origin Basin including Sari won to be about 55 km deep, whereas those of Mt. Backdu is found to be about 38 km. The high ratio of P-wave velocity/S-wave velocity at Moho suggests that there must be a partial melting body near the boundary of the crust and mantle. Consequently we may well consider Mt. Backdu as a dormant volcano which is holding the intermediate magma chamber near the Moho discontinuity. This study also brought interesting and important findings that there exist some materials with very high P- and S-wave velocity annomoalies at depth of about 40 km near Mt. Myohyang area at the edge of the Rangnim Massif shield.
Chun Jong-Hwa;Cheong Daekyo;Han Sang-Joon;Huh Sik;Yoo Hai-Soo
Economic and Environmental Geology
/
v.39
no.1
s.176
/
pp.83-93
/
2006
The Kita-Yamato Trough is characterized by a SW-NE trending narrow graben between the Yamato Bank and the Kita-Yamato Bank in the central East Sea/Japan Sea (ES/JS). Core 20EEZ-1 was obtained in the flat summit of a small ridge from the southwest Kita-Yamato Trough. The sedimentation was mainly controlled by the supply of hemipelgic sediments and substantial tephras from explosive volcanic eruptions of the Quaternary volcanoes. The aim of this study is to reconstruct the tephrostratigraphy from the marine sediments collected from the Kita-Yamato Trough and to provide the atmosphere and ocean conditions during the explosive volcanic eruptions. According to the detailed tephrostratigraphy and lithofacies records, the core sediments were deposited during the last marine isotope stage (MIS) 7. The core consists of four lithofacies, idetified as, oxidized mud (OM), crudely laminated mud (CLM) and bioturbated mud (BM), interbedded with coarse-grained tephra (TP). The major element geochemistry and stratigraphic positions of seven tephra layers suggest that they originated from the Aira caldera in Kyushu area among the Japanese islands (AT tephra; 29.24 ka), unknown submarine volcano in the south Korea Plateau (SKP-I; MIS 3, SKP-II; MIS 4, SKP-IV; boundary between MIS 6 and MIS 5e, SKP-V; MIS 6, respectively), and the Baegdusan volcano in the Korean Peninsula (B-KY1; ca. 130 ka, B-KY2; ca. 196 ka). The absence of tephras originated trom Ulleung Island in core 20EEZ-l suggest that the tephras had not been transported into the Kita-Yamato Trough by atmosphere conditions during the eruptions. On the other hand, the B-KYI and the B-KY2 tephras derived from the Baegdusan volcano were founded in the Kita-Yamato Trough by a presence of prevailing westerly winds during the eruptions. Furthermore, the SKP tephras were characterized by the transport across the air-water interface, causing quickly thrust of raising eruption plumes from subaqueous explosive eruptions. Surface currents may play an important role in controlling the distribution patterns of the SKP tephras to distal areas. The tephrostratigraphic study in the Kita-Yamato Trough provides the important chronostratigraphic marker horizons and the detailed atmosphere and ocean conditions during the explosive eruptions.
The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).
The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.
Paleomagnetic and rock-magnetic investigations have been carried out for the Cretaceous sedimentary rocks in the Poongam (also called Gapcheon) Basin in the eastern South Korea. A total of 128 independently oriented core samples were drilled from 13 sites for this study. The mean direction after bedding correction (D/I=353.1$^{\circ}$/55.6$^{\circ}$, k=21.5, =$$\alpha$_{95}$=10.1$^{\circ}$) is more dispersed than the mean direction before bedding correction (D/I=10.5$^{\circ}$/56.9$^{\circ}$, k=73.9, =$$\alpha$_{95}$=5.3$^{\circ}$), and the stepwise unfolding of the characteristic remanent magnetization (ChRM) reveals a maximum value of k at 20% unfolding. Secondary authigenic hematite accompanied by altered clays such as chlorite was identified by the electron microscope observations. These results collectively imply that the ChRM is remagnetized due to the formation of the secondary authigenic hematite after tilting of the strata. It is interpreted that the chemical remagnetization was connected to the introduction of mixed magmatic-meteoric fluids, which formed hydrothermal vein deposits near the study area. The paleomagnetic pole position (214.3$^{\circ}$E, 81.6$^{\circ}$N, =$A_{95}$=7.4$^{\circ}$) of the Cretaceous sedimentary rocks calculated from remagnetized directions is close to those of the Late Cretaceous and Tertiary poles of the Korean Peninsula. This Late Cretaceous to Tertiary remagnetization seems to be widespread over the Okcheon Belt because the chemical remagnetization is previously reported to be found in rocks from other Cretaceous small basins (e.g., Eumseong, Gongju and Youngdong basins) along the Okcheon Belt and some Paleozoic strata from the Okcheon unmetamorphosed zone.
The laboratory scale experiment was performed to evaluate the sealing capacity of the capping rock such as tuff and mudstone, measuring the intial supercritical $CO_2$ ($scCO_2$) injection pressure and the $scCO_2$-water-rock reaction for 90 days. The drilling cores sampled from 800 m in depth around the Janggi basin, Korea were used for the experiment. The mineralogical changes of mudstone and tuff were measured to evaluate the geochemical stability during the $scCO_2$-water-rock reaction at $CO_2$ storage condition (100 bar and $50^{\circ}C$). The rock core was fixed in the high pressurized stainless steel cell and was saturated with distilled water at 100 bar of pore water pressure. The effluent of the cell was connected to the large tank filled with 3 L of water and 2 L of $scCO_2$ at 100 bar, simulating the subsurface injection condition. The $scCO_2$ injection pressure, which was higher than 100 bar, was controlled at the influent port of the cell until the $scCO_2$ begin to penetrate into the rock and the initial injection pressure (> 100 bar) of $scCO_2$ into the rock was measured for each rock. The mineralogical compositions of mudstones after 90 days reaction were similar to those before the reaction, suggesting that the mudstone in the Janggi basin has remained relatively stable for the $scCO_2$ involved geochemical reaction. The initial $scCO_2$ injection pressure (${\Delta}P$) of a tuff in the Janggi basin was 15 bar and the continuous $scCO_2$ injection into the tuff core occurred at higher than 20 bar of injection pressure. For the mudstone in the Janggi basin, the initial $scCO_2$ injection pressure was higher than 150 bar (10 times higher than that of the tuff). From the results, the mudstone in Janggi basin was more suitable than the tuff to shield the $scCO_2$ leakage from the reservoir rock at subsurface.
The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.
The Okcheon Group in the southwestern part of the Okcheon Metamorphic Belt is subdivided into two distinct tectonostratigraphic units: the Boeun unit in the south and the Pibanryeong unit in the north. The Boeun unit consists of petites, psammites, carbonaceous petites, limestones and pebble-bearing quartzites. The Pibanryeong unit is composed of petites, well-sorted fine-grained psammites, carbonaceous psammites and quartzites. In order to outlining stratigraphy and depositional environments of the Okcheon Group, detailed stratigraphic sections were measured in three locations; one section(Gosan section) of the Boeun unit and two sections(Sorungjae and Hwangryeongzae sections) of the Pibanryeong unit. The Gosan section of the Boeun unit is interpreted to be deposited in the shallow marine environments, whereas the Sorungjae and Hwangryeonaiae sections of the Pibanryeong unit appear to be deposited in slope and deep basin environments. This result indicates rapid subsidence between deposition of the Boeun and Pibanryeong units in sedimentary environment. The trace of sedimentological environments in the Hwasan area was investigated by geochemical analysis of 109 metapelitic and psammitic rock samples. Distinct chemical variations of politic and psammitic rocks from the Boeun and Pibanryeong units in the study area are evident from plots of major elements and $A1_2O_3$/$SiO_2$ versus Basicity Index($Fe_2O_3{+}MgO$)/($SiO_2{+}K_2O{+}Na_2O$). The rocks show a progressive chemical trend from the Boeun unit to the Pibanryeong unit on these diagrams. They in the southern sector of the Boeun unit display lower values and a comparatively wide range of $A1_2O_3$/$SiO_2$ and Basicity Index, as compared with those from the northern sector of the Boeun and Pibanryeong units. The southern sector of the Pibanryeong unit including narrow staurolite-bearing zone is characterized by values that are transitional between the Boeun and Pibanryeong units. These data, combined with depositional environment progressively deepened towards the northwest, support a half-graben model for the Okcheon basin, as proposed by Cluzel et al.(1990)
In order to investigate the vertical variations and speciations of trace elements, and their correlations in Hoidong reservoir, sediment cores (21-41 cm below surface) and interstitial water samples were collected from five sampling locations. The total average concentrations of trace metals in sediment core samples were $232{\pm}30.8mg/kg$ for Zn, $119{\pm}272mg/kg$ for Cu, $58.4{\pm}4.1mg/kg$ for Pb, $15.7{\pm}3.3mg/kg$ for Ni and $1.6{\pm}0.3mg/kg$ for Cd. The total concentrations of trace metals in core sediments generally decreased toward the center of the Hoidong reservoir. The total concentrations of Mn, Pb and Zn decreased with depth for all the sample locations, while Cu and Fe concentrations increased. The trace metal concentrations of interstitial water sample were in the order of Fe>Mn>Cu>Zn, but Cd, Ni and Pb were not detected. The concentrations of Zn, Cu, Fe and Mn in the interstitial water samples showed a tendency of increasing toward the bottom of the core, suggesting a possible upward diffusion. This migration of trace metals may lead to their transfer to the sediment-water interface. These trace elements would be subsequently fixed onto amorphous Fe and Mn-oxides and carbonates in the topmost layer of sediment. Based on the $K_D$ values, the relative mobilities of the studied metals were in the order of Mn>Cu>Zn>Fe. Geochemical partitioning confirmed that surface enrichment by trace metals mainly resulted from a progressive increase of the concentrations in the fractions II and III. Copper, Fe, Mn and Zn concentrations of interstitial water were closely correlated with their exchangeable fractions of sediments.
Amphibolite-hosted Fe-Ti mineralization at the Soyeonpyeong Island, located in central western part of the Korean Peninsula is a typical orthomagmatic Fe-Ti oxide deposit in South Korea. The amphibolite intruded into NW-SE trending Precambrian metasedimentary rocks. Lower amphibolite is characterized by igneous layering, consisting of feldspar-dominant and amphibole-Fe-Ti oxide-dominant layers. The igneous layering shows complicated and/or sharp contact. In contrast, upper amphibolite has a more complicated lithofacies (garnet-bearing, coarser, and schistose), and massive Fe-Ti oxide ore alternates with schistose amphibolite. NS- and EW-trending fault systems lead to redistribute upper amphibolite-hosted Fe-Ti orebody and igneous layering of lower amphibolite, respectively. The whole-rock compositions of amphibolite and Fe-Ti oxide ore reflect their constituent minerals. Amphibolite shows significantly positive Eu anomalies whereas Fe-Ti oxide ore has weak negative Eu anomalies. Plagioclase (Andesine to oligoclase) and Fe-Ti oxide minerals have constant composition regardless of their distribution. Amphibole has a compositionally variable but it doesn't reflect the chemical evolution. Mineral compositions within individual layers and successive layers are relatively constant not showing any stratigraphic evolution. This suggests that there are no successive injections of Fe-rich magma or assimilation with Fe-rich country rocks. Contrasting Eu anomalies between amphibolite and Fe-Ti oxide ore also suggest that extensive plagioclase fractionation during early crystallization stage cause increase in $Fe_2O_3/FeO$ ratio and overall Fe contents in the residual magma. Thus, Fe-rich residual liquids may migrate at the upper amphibolite by filter pressing mechanism and then produce sheeted massive Fe-Ti mineralization during late fractional crystallization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.