DOI QR코드

DOI QR Code

Evaluation of the Sealing Capacity of the Supercritical CO2 by the Measurement of Its Injection Pressure into the Tuff and the Mudstone in the Janggi Basin

초임계이산화탄소(scCO2) 주입압력 측정에 의한 장기분지 응회암과 이암의 scCO2 차폐능 평가

  • An, Jeongpil (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Minhee (Department of Environmental Geosciences, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University)
  • 안정필 (부경대학교 지구환경학과) ;
  • 이민희 (부경대학교 지구환경학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Received : 2017.07.31
  • Accepted : 2017.08.28
  • Published : 2017.08.28

Abstract

The laboratory scale experiment was performed to evaluate the sealing capacity of the capping rock such as tuff and mudstone, measuring the intial supercritical $CO_2$ ($scCO_2$) injection pressure and the $scCO_2$-water-rock reaction for 90 days. The drilling cores sampled from 800 m in depth around the Janggi basin, Korea were used for the experiment. The mineralogical changes of mudstone and tuff were measured to evaluate the geochemical stability during the $scCO_2$-water-rock reaction at $CO_2$ storage condition (100 bar and $50^{\circ}C$). The rock core was fixed in the high pressurized stainless steel cell and was saturated with distilled water at 100 bar of pore water pressure. The effluent of the cell was connected to the large tank filled with 3 L of water and 2 L of $scCO_2$ at 100 bar, simulating the subsurface injection condition. The $scCO_2$ injection pressure, which was higher than 100 bar, was controlled at the influent port of the cell until the $scCO_2$ begin to penetrate into the rock and the initial injection pressure (> 100 bar) of $scCO_2$ into the rock was measured for each rock. The mineralogical compositions of mudstones after 90 days reaction were similar to those before the reaction, suggesting that the mudstone in the Janggi basin has remained relatively stable for the $scCO_2$ involved geochemical reaction. The initial $scCO_2$ injection pressure (${\Delta}P$) of a tuff in the Janggi basin was 15 bar and the continuous $scCO_2$ injection into the tuff core occurred at higher than 20 bar of injection pressure. For the mudstone in the Janggi basin, the initial $scCO_2$ injection pressure was higher than 150 bar (10 times higher than that of the tuff). From the results, the mudstone in Janggi basin was more suitable than the tuff to shield the $scCO_2$ leakage from the reservoir rock at subsurface.

본 연구에서는 국내 $CO_2$ 지중저장 후보지인 장기분지에서 덮개암층으로 대표되는 이암과 응회암 코아에 대하여, 초임계이산화탄소(supercritical $CO_2$; $scCO_2$) 초기 주입압력을 측정하고 90일 동안 지화학 반응 실험 결과에 근거하여 두 암석의 $scCO_2$ 차폐능(sealing capacity)을 평가하였다. 장기분지 $CO_2$ 주입 예정부지 주변에서 수행한 대심도시추코아 중 깊이 800 m 이상 되는 이암과 응회암 코아를 대상으로 $scCO_2$ 초기 주입압력을 측정하였다. 스테인레스 강철로 제작한 고압셀(100 mL 용량)을 이용하여 지중저장 조건(100 bar, $50^{\circ}C$)에서 $scCO_2$-지하수-암석 반응을 실시하여 반응 전/후 광물 변화를 관찰하여 덮개암의 지화학적 안정성을 평가하였다. 덮개암에 대한 초기 $scCO_2$ 주입압력을 측정하기 위하여 원통형 스테인레스강철 고압셀 내부에 암석 코아를 고정시키고, 코아 상부와 하부의 압력 차이(100 - 300 bar)를 이용하여 증류수로 포화시킨 후, 고압셀 외부에 부착된 압력계를 이용하여 코아 내에 포화된 공극수압을 100 bar로 유지시켰다. 지중저장 현장에서 덮개암 내부로 $scCO_2$가 이동하는 경계조건을 모사하기 위하여 고압셀 출구를 $scCO_2$와 증류수로 채워진 대형 고압탱크(5 L 용량; 100 bar, $50^{\circ}C$ 유지)에 연결시켜, 고압셀에 고정된 암석 코아 공극 내로 침투하는 경우 지중저장 조건 하에서 일정량의 $scCO_2$가 코아를 통과할 수 있도록 하였다. 셀 입구에서는 코아의 공극수압인 100 bar보다 높게 유지시켜 $scCO_2$를 주입하되, 주입이 지속적으로 진행되기 시작하는 최소 주입압력($100bar+{\Delta}p$)을 암석에 대한 주입압력으로 측정하였다. 90일 반응 후 응회암과 이암의 큰 광물학적 변화는 없는 것으로 나타나 두 암석 모두 $scCO_2$ 주입 시 지화학적으로 안정한 것으로 나타났다. 응회암의 경우 공극수압과 $scCO_2$ 주입압력 차이(${\Delta}p$)가 15 bar에서 $scCO_2$의 내부 침투가 시작되어 20 bar 이후부터는 지속적인 $scCO_2$ 주입이 이루어졌다. 이암의 경우에는 ${\Delta}p$를 150 bar까지 증가시켜도 $scCO_2$가 주입되지 않아 응회암보다 $scCO_2$ 차폐효과가 약 10 배 높은 것으로 나타나, 장기분지에 $CO_2$ 주입 시 응회암보다는 이암층이 덮개암 역할을 할 것으로 판단되었다.

Keywords

References

  1. Bachu, S. (2015) Review of $CO_2$ storage efficiency in deep saline aquifer. Int. J. Greenh. Gas Control, v.40, p.188-202. https://doi.org/10.1016/j.ijggc.2015.01.007
  2. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. and Mathiassen, O. (2007) $CO_2$ storage capacity estimation, methodology and gaps. Int. J. Greenh. Gas Control, v.1, p.430-443. https://doi.org/10.1016/S1750-5836(07)00086-2
  3. Bolger, G.W. and Reifenstuhl, R.R. (2008) Mercury injection capillary pressure and reservoir seal capacity of 26 outcrop samples, Miocene to Triassic age. In Reifenstuhl, R.R., and Decker, P.L., eds., Bristol Bay.Alaska Peninsula region, overview of 2004-2007 geologic research: Alaska Division of Geological & Geophysical Surveys Report of Investigation 2008-1D, p.69-78.
  4. Daniel, R.F. (2005) Boggy creek carbon dioxide seal capacity study, Otway basin, Victoria, Australia. CO2CRC Publication No RPT05-0045, 47p.
  5. Kaldi. J., Daniel, R., Tenthorey, E., Michael, K., Schacht, U., Nicol, A., Underschultz, J. and Backe, G. (2013) Containment of CO2 in CCS: Role of caprocks and faults. Energy. Proc., v.37, p.5403-5410. https://doi.org/10.1016/j.egypro.2013.06.458
  6. Jung, H. B., Um, W. and Cantrell, K.J. (2013) Effect of oxygen co-injected with carbon dioxide on Gothic shale caprock-$CO_2$-brine interaction during geologic carbon sequestration. Chem. Geol., v.354, p.1-14. https://doi.org/10.1016/j.chemgeo.2013.06.019
  7. Kim, M., Gihm, Y., Son, E., Son M., Hwang, I.G., Shinn, Y.J. and Choi, H. (2015) Assessment of the potential for geological storage of $CO_2$ based on structural and sedimentologic characteristics in the Miocene Janggi basin, SE Korea. J. Geol. Soc. Korea, v.51, p.253-271. https://doi.org/10.14770/jgsk.2015.51.3.253
  8. Kim, M., Kim, J., Jung, S., Son, M. and Sohn, Y.K. (2011) Bimodal volcanism and classification of the Miocene basin fill in the northern area of the Janggi-myeon, Pohang, southeast Korea. J. Geol. Soc. Korea, v.45, p.463-472.
  9. Kim, S., Kim, J., Lee, M. and Wang, S. (2016) Evaluation of the $CO_2$ capacity by the measurement of the $scCO_2$ displacement efficiency for the sandstone and the conglomerate in Janggi basin. Econ. Environ. Ceol., v.49, p.469-477.
  10. Leung, D.Y., Caramanna, G. and Maroto-Valer, M.M. (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev., v.39, p.426-443. https://doi.org/10.1016/j.rser.2014.07.093
  11. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T. (2010) Geological storage of $CO_2$ in saline aquifers - A review of the experience from existing storage operations. Int. J. Greenh. Gas Control, v.4, p.659-667. https://doi.org/10.1016/j.ijggc.2009.12.011
  12. NETL(National Energy Technology Laboratory) (2007) Carbon Sequestration Atlas of the United States and Canada, Annual Report. U.S. Department of Energy/Office of Fossil Energy.
  13. NETL(National Energy Technology Laboratory) (2010) Carbon Sequestration Atlas of the United States and Canada, Annual Report. U.S. Department of Energy/Office of Fossil Energy.
  14. Park, J., Baek, K., Lee, M., Chung, C. and Wang, S. (2017) The use of the surface roughness value to quantify the extent of supercritical CO2 involved geochemical reaction at a CO2 sequestration site. Appl. Sci., v.7, p.1-17.
  15. Smith, D.J., Noy, D.J., Holloway, S. and Chadwick, R.A. (2011) The impact of boundary conditions on $CO_2$ storage capacity estimation in aquifers, Energy Proc., v.4, p.4828-4834. https://doi.org/10.1016/j.egypro.2011.02.449
  16. Song, C.W., Son, M., Sohn, Y.K., Han, R., Shinn, Y.J. and Kim, J.C. (2015) A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. J. Geol. Soc. Korea, v.51, p.53-66. https://doi.org/10.14770/jgsk.2015.51.1.53
  17. Song, J. and Zhang, D. (2013) Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ. Sci. Technol., v.47, p.9-22. https://doi.org/10.1021/es301610p
  18. Span, R. and Wagner, W. (1996) A new equation of state for carbon dioxide covering the fluid region from the tripple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data, v.25, p.1509-1596. https://doi.org/10.1063/1.555991
  19. Wang S., Kim, J. and Lee, M. (2016) Measurement of the scCO2 storage ratio for the CO2 reservoir rocks in Korea. Energy Proc., v.97, p.342-347. https://doi.org/10.1016/j.egypro.2016.10.015