DOI QR코드

DOI QR Code

Genetic Environments of the High-purity Limestone in the Upper Zone of the Daegi Formation at the Jeongseon-Samcheok Area

정선-삼척 일대 대기층 상부 고품위 석회석의 생성환경

  • 김창성 (고려대학교 지구환경과학과) ;
  • 최선규 (고려대학교 지구환경과학과) ;
  • 김규보 (고려대학교 지구환경과학과) ;
  • 강정극 (고려대학교 지구환경과학과) ;
  • 김경배 (강원머티리얼) ;
  • 김학수 (지오제니 컨설턴트) ;
  • 이정상 (지오제니 컨설턴트) ;
  • 유인창 (경북대학교 지구시스템과학부)
  • Received : 2017.07.27
  • Accepted : 2017.08.30
  • Published : 2017.08.28

Abstract

The carbonate rocks of the Daegi Formation are composed of the limestone at the upper and lower zones, and the dolomite at the middle zone, in which the upper zone has higher CaO content than others. The colors of carbonate rock in the Daegi Formation can be divided into five types; white, light brown, light gray, gray, and dark gray. The white to light gray colored rocks correspond to the high purity limestone with 53.15 ~ 55.64 wt. % CaO, and the light brown colored rocks contain 20.71 ~ 21.67 wt. % MgO. The bleaching of carbonate rocks are not related to CaO composition of the rocks, as light gray rocks tend to be higher in CaO content than those of the white rocks at the lower zone. The pelitic components are also occasionally increased in white limestone than light grey one. $Al_2O_3$ is one of the most difficult content to remove during hydrothermal processes, so the interpretation that the limestone is purified together with hydrothemral bleaching, has little merit. The wide range (over 16 ‰) of ${\delta}^{18}O_{SMOW}$, smaller variation (within 2 ‰) of ${\delta}^{13}C_{PDB}$ are apparent in both the upper and lower zones, which indicate the Daegi Formation had been affected overall by hydrothermal fluids. The K-Ar isotopic age of hydrothermal alteration in the GMI limestone mine is $85.1{\pm}1.7Ma$. Gradual change from grey through light grey to white limestone is accompaned by lower oxygen stable isotope values, which is major evidence that the hydrothermal effect is the main process of the bleaching. Although the Daegi Formation has suffered from hydrothermal activity and increase in whiteness, there is no clear evidence demonstrating the relationship between bleaching and high purity of limestone. The purification of limestone has nothing to do with the hydrothermal activity in this area. Instead, it should be considered that the change of sedimentary environment related to see-level fluctuation which can prevent deposition of pelitic components especially $Al_2O_3$ contrbuted to the formation of the high purity limestone in the upper zone of the Daegi Formation. Considering the evidences such as increase in CaO content of limestone by depth, gradual change from calcite to dolomite at the lower zones, and occurring the high purity limestone at the upper zone, the interpretation of sequence stratigraphic aspect to the formation of the high purity Daegi limestone appears to be more suitable than that of hydrothermal alteration origin.

대기층의 고품위 석회석 생성기작은 고품위로 퇴적되었다는 견해와 퇴적 이후 열수의 작용에 의해 상부 영역에 국한되어 백색화와 함께 고품위화 하였다는 두 가지 견해로 나뉘어 있으며, 광물-암석화학적 연구를 통해 이들 견해를 검토하였다. 대기층의 암색은 크게 백색, 담갈색, 담회색, 회색, 암회색의 다섯 단계로 구분할 수 있다. 이 중 백색~담회색 암석은 53.15 ~ 55.64 wt. % CaO의 고품위 석회석이며, 담갈색은 20.71 ~ 21.67 wt. % MgO로 거의 순수한 백운석이다. 대기층은 상부와 하부의 석회암대와 그 사이에 중부 백운암대로 구성되어 있으며, 상부가 하부에 비해 전반적으로 높은 CaO 함량을 보인다. 다만, 대기층 상부와 하부에서 전반적으로 백색화 현상이 관찰되며, 하부에서 백색에 비해 담회색 암석의 CaO 함량이 높은 경향이 나타나고 있어, 백색화와 CaO 함량은 상관관계가 없는 것으로 확인된다. 또한, 고품위 석회석과 중-저품위 석회석의 구분은 CaO 성분과 함께 $Al_2O_3$, $K_2O$ 등 이질성분의 함유정도에 따라 구분되는데, 백색도가 높은 영역에서 이질성분의 함량이 증가하는 양상을 보이기도 한다. 특히, $Al_2O_3$는 열수에 의해 쉽게 제거될 수 없는 성분이므로, 열수 작용에 의해 백색화와 함께 이질 성분이 제거되었다는 이론은 증거가 미약한 것으로 판단된다. 산소-탄소 안정동위원소 분포는 대기층 상부와 하부의 석회암대 모두에서 탄소 안정동위원소의 변화 폭은 2 ‰ 이내인 반면, 산소 안정동위원소는 16 ‰ 이상의 큰 폭의 변화가 인지되어, 대기층 전반적으로 열수의 영향을 받은 것으로 확인된다. 열수작용의 시기는 $85.1{\pm}1.7Ma$로 주변 동원광산의 광화시기와 일치한다. 회색-담회색-백색으로 백색화가 진행될수록 산소 안정동위원소 비는 낮아지는 경향이 확인되며, 이는 이 지역 탄산염암의 백색화는 열수에 의한 현상임을 지시한다. 따라서, 대기층은 전반적으로 열수의 영향을 받았으며, 열수에 의해 백색화가 진행되었으나, 고품위 석회석화는 백색화와 관련이 없으며, 열수에 의한 현상이 아닌 것으로 판단된다. 대기층 상부에서의 고품위화는 이질물 특히, $Al_2O_3$ 성분이 효과적으로 제거될 수 있는 퇴적환경을 고려하여야 하며, 중부 백운암대를 중심으로 상-하부 주변에서 CaO 함량이 증가하는 양상으로부터 순차층서적으로 퇴적 당시 이질물의 퇴적작용이 배제된 탄산염 천해환경이 조성된 결과로 보는 것이 타당할 것이다.

Keywords

References

  1. Bowman, J.R. (1998) Stable-isotope systematics of skarn, in Lentz, D.R. (ed.) Mineralized intrusion-related skarn systems. Mineralogical Association of Canada, Short Course Series, v.26, pp.99-145.
  2. Cao, Y., Du, Y., Pang, Z., Gao, F., Du, Y. and Liu, X. (2016) Iron transport and deposition mechanisms in the Taochong iron-rich skarn deposit, Middle-Lower Yangtze Valley, Eastern China. Ore Geology Reviews, v.72, p.1037-1052. https://doi.org/10.1016/j.oregeorev.2015.10.001
  3. Choi, S.-G., Kim, S.T. and Lee, J.G. (2003) Stable isotope systematics of Ulsan Fe-W skarn deposit, Korea. Journal of Geochemical Exploration, v.78-79, p.601-606. https://doi.org/10.1016/S0375-6742(03)00034-7
  4. Choi, S.-G., Kim, C.S., Seo, J., Park, J.W., Ryu, I.-G., Kim, R.H., Shin, J.K. and Kim., N.H. (2006) Report on the academic research in venture exploration (molybdenum, Yemi area). KORES, Seoul, 84p.
  5. Geol. Soc. Korea (1999) Geology of Korea, Sigma Press, Seoul, 802p.
  6. Giggenbach, W.F. (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth and Palnetary Science Letters, v.113, p.495-510. https://doi.org/10.1016/0012-821X(92)90127-H
  7. Hwang, J. and Park, H.-I (1996) Stable Isotope of the Nakcheon, Eunchi and Jungbong gold-silver deposits in the northern Taebagsan Mining District. Economic and Environmental Geology, v.29, p.159-170.
  8. Je, Y.-K. and Lee, E.-J. (1987) Exploration and development of the Taebaek orebody in the Yeonwha Pb-Zn mine. Journal of Korean Institute of Mining Geology. v.20, p.273-288.
  9. KIGAM (2016a) 2015/2016 Mineral commodity supply and demand. KIGAM, Daegeon, 197p.
  10. KIGAM (2016b) Yearbook of mineral statistics (2015). KIGAM, Daejeon, 197p.
  11. Kim, J.H. and Lee, K.M. (2000) Report on detailed survey (Limestone, Jeongseon-Yemi area), KORES, Wonju, 73p.
  12. KORES (1973) Ore deposits of Korea (gold-silver). KORES, Seoul, v.5, 376p.
  13. Lee, C.H., Choi, S-W., Hur, S.D. and Hwang, J. (1998) Epithermal mineralization of the Wangje antimony deposit, Korea; Geochemistry and mineralogy. Journal of the Geological Society of Korea, v.34, p.228-242.
  14. Lee, C.H. and Shin, D.B. (2009) Stable isotope characeristics and evolution of mineralizing fluids in the Au-Ag-Sb mineralized district in northern Taebaeksan region, Korea. Journal of the Geological Society of Korea, v.45, p.261-274.
  15. Lee, J.T., Lim, B.R., Noh, N.K., Yun, U.S., Kim, C.S., Jeong, U.J., Park, S.W., Choi, J.W., Lee, Y.H., Han, S.H., Hong, K.S. and Hong, H.K. (2005) Report on detailed survey (Limestone, Samcheok-Hajang area). KORES, Wonju, 86p.
  16. Noh, J.H. and Oh, S.J. (2005) Hydrothermal Alteration of the Pungchon Limestone and the Formation of High-Ca Limestone, Journal of the Geological Society of Korea, v.41, p.175-197.
  17. Noh, J.H., Oh, S.J. and Kim, K.J. (2004) Applied-mineralogical study on the mineral facies and characterristics of domestic high-Ca limestone, Journal of Mineral Society of Korea, v.17, p.339-355.
  18. Park H.-I., Chang, H.W. and Jin, M.S. (1988) K-Ar ages of mineral deposits in the TaeBaeg Mountain district. Journal of Korean Institute of Mining Geology, v.21, p.57-67.
  19. Park, H.-I. and Park, Y.-R. (1990) Gold and silver mineralization in the Dongweon mine. Journal of Korean Institute of Mining Geology, v.23, p.183-199.
  20. Ray, J.S. and Ramesh, R. (2006) Stable carbon and oxygen isotopic compositions of Indian carbonatites. International Geology Review, v.48, p.17-45. https://doi.org/10.2747/0020-6814.48.1.17
  21. Ren, T., Zhang, X., Han, R. and Hou, B. (2014) Carbon-oxygen isotopic covariations of calcite from Langdu skarn copper deposit, China: implications for sulfide precipitation. Chinese Journal of Geochemistry, v.34, p.21-27.
  22. Ryu, I.-C. (2003) Integrated stratigraphy approach for new additional limestone reserves in the Paleozoic Taebaksan Basin, Korea. Economic and Environmental Geology, v.32, p.59-74.
  23. Seo, J.R. (1983) The study of geology and ore deposit at Dongnam mine area. M.S. Thesis, Kyeongbuk National University, 88p.
  24. Shin, K.H. (2000) Report on reserves in the Dongam mine. KORES, Wonju, 10p.
  25. Sim, M.S. and Lee, Y.I. (2006) Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea), and its bearing on the regional stratigraphic correlation. Sedimentary Geology, v.191, p.151-169. https://doi.org/10.1016/j.sedgeo.2006.03.016
  26. Tayler, H.P., Frechen, J. and Degens, E.T. (1967) Oxygen and carbon isotope studies of carbonatites from Laacher See district, west Germany and Alno district, Sweden. Geochimica Et Cosmochimica Acta, v.31, p.407-430. https://doi.org/10.1016/0016-7037(67)90051-8
  27. Yoon, K.H. and Woo, K.S. (2006) Textural and geochemical characteristics of crystalline limestone (high-purity limestone) in the Daegi Formation, Korea. Journal of the Geological Society of Korea, v.42, p.561-576.
  28. You, S.H., Kang, H.T., Oh, J.K., Lee, K.H. and Kim, J.W. (2014) Analyses for development status and related industrial effects of domestic major metal and non-metal resources. KORES, Wonju, 260p.
  29. Yun, U.S., Jeong, U., Lim, B.R., Oh, Y.B, Jeong, S.I., Jeong, J.T. and Jeong, S.H. (2016) Report on the detailed mineral exploration in the Homyeong area (iron-manganese). KORES, Wonju, 123p.
  30. Zheng, Y.-F. and Hoefs, J. (1993) Carbon and oxygen isotopic covariations in hydrothermal calcites. Mineralium Deposita, v.28, p.79-89.