DOI QR코드

DOI QR Code

Ore Mineralization of The Hadong Fe-Ti-bearing Ore Bodies in the Hadong-Sancheong Anorthosite Complexes

하동-산청 회장암체 내 부존하는 하동 함 철-티탄 광체의 광화작용

  • Lee, In-Gyeong (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Jun, Youngshik (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 이인경 (충북대학교, 지구환경과학과) ;
  • 전영식 (충북대학교, 지구환경과학과) ;
  • 최상훈 (충북대학교, 지구환경과학과)
  • Received : 2017.02.18
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.

하동-산청 회장암체는 영남육괴의 남서부에 선캠브리아기 지리산 편마암 복합체의 변성암류를 기반암으로 차노카이트(charnockite)와 함께 분포하며, 주변에는 중생대 화성암류가 관입 산출한다. 하동-산청 회장암체는 중생대 쥬라기의 섬장암을 경계로 북서쪽의 산청 회장암체와 남쪽의 하동 회장암체로 구분된다. 광체는 하동 회장암체 내에 남북방향으로 약 14 km의 연장을 보이며 단속적으로 산출되는 하동 함 철-티탄 암맥상 광체이다. 하동 함 철-티탄 암맥상 광체 내에는 함-철 산화광물인 자철석(magnetite) 및 티탄철석(ilmenite) 과 함께 함 티탄 광물들(금홍석(rutile) 과 티타나이트(titanite))과 소량의 황화광물들(자류철석, 황철석, 황동석, 섬아연석 등)이 수반하여 산출된다. 하동 함 철-티탄광체의 광화작용은 초기 자철석-티탄철석의 공생 산출로 시작되어 자철석-티탄철석 ${\rightarrow}$ 자철석-티탄철석-자류철석 ${\rightarrow}$ 티탄철석-자류철석-금홍석-티타니이트(${\pm}$황철석) ${\rightarrow}$ 황화광물의 공생관계를 보이며 진행되었다. 광체 내 공생관계와 및 열역학적 연구를 통하여 확인된 하동 함 철-티탄 광체의 초기 함 철-티탄 광화작용은 약 $10^{-11.8}{\sim}10^{-17.2}$ atm의 산소 분압조건($700^{\circ}C$)에서 $Fe_3O_4-FeS$ 상평형을 이루는 황 분압조건 (약 $10^0$ atm) 까지 황 분압의 증가에 의하여 진행되었으며, 그 후 황화광물의 산출은 산소 분압은 감소(${\geq}10^{-20.2}$ atm)되면서 황 분압이 증가(${\geq}10^0$ atm) 하는 환경에서 진행되었다.

Keywords

References

  1. Ashwal, L.D. (1993) Anorthosites. Springer-Verlag, Berlin, 422.
  2. Barton, P.B. Jr., P. III and Toulmin (1964) The Electrum Tarnishing Method for Determination of the Fugacity of Sulfur in Laboratory Sulfide Systems. Geochim. Comochim., Acta, v.25, p.619-640.
  3. Choi, Y.K., Cheong, C.H., Lee, D.S., Kim, C.W. and Kim, S.J. (1964) Geological map of the Danseong sheet, 1:50,000, Korea Institute of Geoscience and Mineral Resources. 48p.
  4. Froese, E. (1977) Oxidation and sulphidation reactions. In Short course in application of thermodynamics to petrology and ore deposits, Mineralogical association of Canada, p.84-98.
  5. Froese, E.A. and Gunter, E. (1976) A Note on the Sulfur Vapor Equilibrium. Econ. Geol., 71, 1589-1594. https://doi.org/10.2113/gsecongeo.71.8.1589
  6. Hass, J.L., Jr. and Robie, R.A. (1973) Thermodynamic Data for Wüstite, $Fe_{0.947}O$, Magmetite, $Fe_3O_4$, and Hematite, $Fe_2O_3$, (abstract). Am. Geophys. Union, v.54, p.483.
  7. Jeong, J.G. (1980) Petrologic Studies on Anorthositic Rocks in Handong-Sancheing District, Korea. Jeornal of the Geological Society of Korea, v.18, p.83-108.
  8. Jeong, J.G. (1982) Petrologic studies on anorthositic rocks in Hadon-Sancheong district, Korea. Jour. Geol. Soc. Korea, v.18, p.83-108.
  9. Jeong, J.G. (1987) Magmatic differentiation of the anorthositic rocks in Hadong-Sancheong area, Jour. Geol. Soc. Korea, v.3, p.216-228.
  10. Jeong, J.G., Kim, W.-S. and David H. Watkinson (1989) Geologic structure of Hadong anorthositic rocks and associated titanium orebody. Jour. Geol. Soc. Korea, v.25, p.98-111.
  11. Jeong, J.G., Kim, W.-S. and Seo, B.-M. (1991) Differentiation of the plutonic rocks in Saengcho-myon, Sancheong-gun: trace element modeling for the magmatic differentiation. J. Miner. Soc. Korea, v.4, p.69-89.
  12. Jung, J.S., Kim, J.-S., Cho, H., Song, C.-W., Son, M., Ryoo, C.-R., Chi, S. and Kim, I.-S. (2010) Occurrence and deformation of Fe-Ti ores from the Proterozoic Hadong anorthosites, Korea. Jour. Petrol. Soc. korea. v.19, p.31-49.
  13. Kang, S.-W., Yoo, B.-W., Ryoo, C. and Kim, Y.-J. (1994) Petrochemistry of plutons in the Hamyang-Macheon Area, Gyeongnam. Jour. Korean Earth Science Society, v.15, p.100-114.
  14. Kim, D.-Y., Song, Y.-S. and Park, K.-H. (1998) Petrology, geochemistry and geological chronology of charnockite of Eastern Jirisan area. 53rd Abstract Book of Geol. Soc. korea, p.35-36.
  15. Kim, N.J. and Gang, P. J. (1965) Geological map of the Jinkyo sheet, 1:50,000, Korea Institute of Geoscience and Mineral Resources.
  16. Kim, O.J., Hong, M.S., Park, H.I., Park, Y.D., Kim, G.T. and Yun, S. (1963) Geological map of the Sancheong sheet, 1:50,000, Korea Institute of Geoscience and Mineral Resources.
  17. Kim, O.J., Hong, M.S., Yun, S.K., Park, H.I. and Park, Y.D. (1964) Geological map of the Unbong sheet, 1:50,000, Korea Institute of Geoscience and Mineral Resources.
  18. Kim, S.Y., Seo, J.R., Yang, J.I. and Kim, S.B. (1991) Geology and ore deposits of rare elements in Hadong and Uljin area, Korea. Korea Institute of Geology, Mining and Materials, 156p.
  19. Ko, B.K. (2006) Petrological and geochemical studies of the petrogenesis of the Hadong-Sancheong anorthosite complex. Ph. D. Thesis, Kangwon National University, 154p.
  20. Koh, S.-M., Yoo, J.-H., Kim, Y.-U., Lee, H.-Y., Kim, S.-Y. and Song, M.-S. (2003) Evalution and exploration of titanium and feldspar deposits in Hadong-Sancheong-Hapcheon area. Korea Institute of Geoscience and Mineral Resources, 70p.
  21. Koh, S.-M. (2010) Occurrences of Ilmenite Deposits in Hadong-Sancheong Area. J. Miner. Soc. Korea, v.23, p.25-37.
  22. Kwon, S.T. and Jeong, J.G. (1990) Preliminary Sr-Nd Isotope Study of the Hadong-Sancheong Anorthositic Rocks in Korea: Implication for Their Origin and for the Precambrian Tectonics. Journal of the Geological Society of Korea, v.26, p.341-349.
  23. Lee, I.G., Park, S.J., Chi, S.J. and Choi, S.H. (2011) Genesis of Hadong-Sancheong Ti-bearing ore body, 2015 Abstract Book of the Korean Soc. of Econ. and Environ, Geol., p.251.
  24. Lee, J.M., Jeong, J.G. and Kim, W.S. (1999) The preliminary study on the evolution of Hadon anorthositic rocks and their genetic relations with ilmenite-bearing ore bodies, Korea. Jour. Geol. Soc. Korea, v.35, p.321-326.
  25. Lee, S.M. (1980) Some metamorphic aspects of the meta-pelites in Jirisan (Hadong-Sancheong) region. Jour. Geol. Soc. Korea, v.16, p.1-15.
  26. Nam, G.S., Ryu, W.S. and Lee, J.D. (1989) Geological map of the Hadong sheet, 1:50,000, Korea Institute of Geoscience and Mineral Resources.
  27. Park, K.-H., Kim, D.-Y. and Song, Y.-S. (2001) Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship. Jour. Petrol. Soc. Korea, v.10, p.27-35.
  28. Park, Y.-R., Ko, B.K. and Lee, K.-S. (2004) Oxygen and hydrogen isotope studies of fluid-rock interaction of the Hadong-Sancheong anorthositic rocks. Jour. Petrol. Soc. Korea, v.13, p.224-237.
  29. Richardson, F.D.J. and Jeffes, H.E. (1952) The Thermodynamics of Substances of Interest in Iron and Steel Making III-Sulphides. J. Iron Steel Inst., v.71, p.165-175.
  30. Robie, R.A. and Waldbaum, D.R. (1968) Thermodunamic Properties of Minerals and Related Sbubstances at 298K ($25^{\circ}C$ and atmosphere (1.013bar) Pressure and at Higher Temperature. U. S. Geol. Suv. Bull. 1259p.
  31. Scott, S.D. and Barnes, H.L. (1971) Sphalerite Geothermometry and Geobarometry. Econ. Geol., v.66, p.653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  32. Seo, J.R., Park, S.W., Lee, P.G., Oh, M.S. and Lee, B.J. (1993) Study of rare mineral resources in the Hadong area. Korea Institute of Geology, Mining and Materials, 72p.
  33. Shikazono, N. (1985) A Comparison of Temperatures Estimated from the Electrum-Sphalerite-Pyritear-Gentite Assemblage and Filling Temperatures of Fluid Inclusions from Epithermal Au-Ag vein-type Deposits in Japan. v.80, p.1454-1424.
  34. Son, C.M. and Cheong, J.G. (1972) On the origin of anorthosite in the area of Hadon Sancheong, Gyeongsangnamdo, Korea. J. Kor. Inst. Mining Geol., v.5, p.1-20.
  35. Spry, P.G. (2000) Sulfidation and Oxidation Haloes as Guides in the Exploration for Metamorphosed Massive Sulfide Ore. Reviews in Econ. Geol., p.149-161.