DOI QR코드

DOI QR Code

The Mineral Carbonation Using Steelmaking Reduction Slag

제강 환원슬래그의 광물탄산화

  • Ryu, Kyoung-Won (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 류경원 (충북대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Received : 2017.02.18
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

Mineral carbonation for the storage of carbon dioxide is a CCS option that provides an alternative for the more widely advocated method of geological storage in underground formation. Carbonation of magnesium- or calcium-based minerals, especially the carbonation of waste materials and industrial by-products is expanding, even though total amounts of the industrial waste are too small to substantially reduce the $CO_2$ emissions. The mineral carbonation was performed with steelmaking reduction slag as starting material. The steelmaking reduction slag dissolution experiments were conducted in the $H_2SO_4$ and $NH_4NO_3$ solution with concentration range of 0.3 to 1 M at $100^{\circ}C$ and $150^{\circ}C$. The hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at the same leaching temperature. The initial pH of the solution was adjusted to 12 and $CO_2$ partial pressure was 1MPa for the carbonation. The carbonation rate after extracting $Ca^^{2+}$ under $NH_4NO_3$ was higher than that under $H_2SO_4$ and the carbonation rates in 1M $NH_4NO_3$ solution at $150^{\circ}C$ was dramatically enhanced about 93%. In this condition well-faceted rhombohedral calcite, and rod or flower-shaped aragonite were appeared together in products. As the concentration of $H_2SO_4$ increased, the formation of gypsum was predominant and the carbonation rate decreased sharply. Therefore it is considered that the selection of the leaching solution which does not affect the starting material is important in the carbonation reaction.

제강 환원슬래그(steelmaking reduction slag)를 출발물질로 사용하여 다양한 농도의 $H_2SO_4$, $NH_4NO_3$(0.3, 0.5, 0.7, 1 M) 용액, 반응온도 $100^{\circ}C$$150^{\circ}C$의 조건에서 Ca 용출 및 탄산화 실험을 실시하였다. 양이온 용출과 탄산화 반응시간은 각각 2시간 및 1시간이었으며 탄산화 효율 증대를 위해 pH는 약 12로 조절하였고 $CO_2$의 부분압은 10 bar이었다. TG 분석결과로부터 탄산화율을 계산한 결과, $H_2SO_4$ 0.5 M과 반응온도 $150^{\circ}C$의 실험 조건에서 약 86%의 고정화율이 관찰되었으나 이 이상의 농도에서는 탄산화율은 급격히 감소하였다. 그러나 $NH_4NO_3$용액을 사용한 결과, 산의 농도가 증가함에 따라 탄산화율도 비례적으로 증가하여 1 M 농도에서 약 93%의 탄산화율이 관찰되었다. 따라서 제강 환원슬래그를 사용한 탄산화반응은 $H_2SO_4$보다는 $NH_4NO_3$용액을 사용할 경우 유리한 것으로 분석되었다. SEM 분석결과, 합성된 아라고나이트는 나무토막 형태(wood piece shape), 둥근형태(round shape), 꽃모양(flower shape)으로 관찰되었으며, 방해석은 결정면이 잘 발달된 능면체형(rhombohedral shape)의 전형적인 형태로 확인되었다.

Keywords

References

  1. Bachu, S. (2000) Sequestration of $CO_2$ in geological media: criteria and approach for site selection in response to climate change, Energy Convers. Manage., v.41 p.953-970. https://doi.org/10.1016/S0196-8904(99)00149-1
  2. Chen. J. and Xiang, L. (2009) Controllable synthesis of calcium carbonate polymorphs at different temperatures, Powder Technol., v.189, p.64-69. https://doi.org/10.1016/j.powtec.2008.06.004
  3. Holloway, S. (1997) An overview of the underground disposal of carbon dioxide. Energy Convers, Manag., v.38, p.193-198. https://doi.org/10.1016/S0196-8904(96)00268-3
  4. Huijgen, W.J.J., Ruijg, G.J., Comans, R.N.J. and Witkamp, G.J. (2006) Energy consumption and net $CO_2$ sequestration of aqueous mineral carbonation, Ind.Eng. Chem. Res., v.45, p.9184-9194. https://doi.org/10.1021/ie060636k
  5. Huijgen, W.J.J. and Comans, R.N.J. (2005) Carbon dioxide sequstration by mineral carbonation: Literature review update 2003-2004, ECN-C--05-022, Energy Research Centre of The Netherlands, Petten, The Netherlands.
  6. Hwanju, J., Ho Young J., Sunwon R. and Pyeong-Koo L. (2015) Direct Aqueous Mineral Carbonation of Waste Slate Using Ammonium Salt Solutions, Metals, v.5, p.2413-2427. https://doi.org/10.3390/met5042413
  7. Kakizawa, M., Yamasaki, A. and Yanagisawa, Y. (2001) A new $CO_2$ disposal process using artificial rock weathering of calcium silicate accelerated by acetic acid. Energy, v.26, p.341-354. https://doi.org/10.1016/S0360-5442(01)00005-6
  8. Oeklers, E.H. and Schott, J. (2005) Geochemical aspects of $CO_2$ sequestration. Chem. Geol., v.217, p.183-186. https://doi.org/10.1016/j.chemgeo.2004.12.006
  9. Tai, C.Y. and Chen, F.B. (1998) Polymorphism of caco3, precipitated in a constant composition environment, AlchE, J., v.44, p.1790-1798. https://doi.org/10.1002/aic.690440810
  10. Takeshi, O., Toshio, S. and Kiyoshi. S. (1987) The formation and transformation mechanism of calcium carbonate in water, Geochim. Cosmochim. Acta v.51, p.2757-2767. https://doi.org/10.1016/0016-7037(87)90155-4
  11. Tier, S., Eloneva, S., Fogelholm, C.-J. and Zevenhoven, R. (2006) Stability of calcium carbonate and magnesium carbonate in rainwater and nitric acid solutions, Energy Convers. Manage., v.47, p.3059-3068. https://doi.org/10.1016/j.enconman.2006.03.021
  12. Wang, Y.Y., Yao, Q.Z., Zhou, G.T. and Fu, S.Q. (2013) Formation of elongated calcite mesocrystals and implication for biomineralization, Chem. Geol. v.360-361 p.126-133. https://doi.org/10.1016/j.chemgeo.2013.10.013
  13. Yogurtcuoglu, E. and Ucurum, M. (2011) Surface modification of calcite by wet-stirred ball milling and its properties, Powder Technol., v.214, p.47-53. https://doi.org/10.1016/j.powtec.2011.07.032