• Title/Summary/Keyword: 지속가능한 성능

Search Result 495, Processing Time 0.03 seconds

Recent Advances in the Development of Nickel Catalysts for Carbon Dioxide Methanation (이산화탄소 메탄화를 위한 니켈 촉매 기술 동향)

  • Jaewon Jang;Jungpil Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.361-371
    • /
    • 2024
  • This study reviews recent advancements in Ni-based catalysts for CO2 methanation, emphasizing high thermal stability and catalytic performance at elevated temperatures. Ni catalysts are preferred for their strong hydrogen adsorption, high activity, and methane selectivity. Strategies such as optimizing metal loading, using efficient supports, and introducing promoters enhance thermal stability by preventing sintering and carbon deposition. The produced methane serves as a valuable feedstock for synthetic fuels and chemicals, improving the economic feasibility of the CO2 methanation process. These findings underscore the importance of thermal stability in developing effective Ni catalysts for large-scale CO2 methanation.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

Development of the 3D simulation for disaster prevention in the downtown soil erosion (I) (도심지 토사재해 예방을 위한 3차원 시뮬레이션 개발(I))

  • Shin, Bong Jin;Youn, Sang Ho;Lee, Gi Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.408-417
    • /
    • 2016
  • The frequent regional torrential or heavy rain and typhoon mostly caused by climate change has resulted in sediment disasters particularly in mountainous or hilly areas. More than 65% of South Korea is mountainous and development and rapid urbanization has brought lots of steep sloping industrial complexes, which are adjacent to cities. Such continuous urbanization and industrialization can result in an increase in serious damage to those places. Korea has very high population density so sediment disaster could result in a tremendous loss of property and life. A recent 10-year (2001~2010) study of the average annual loss shows 68 casualties and property loss of 1.7044 trillion Won(?), which indicates a 20% and 25% decrease for both life and property, respectively, but urban areas are experiencing increasing damage. In this paper, a comprehensive simulator composed by references, analyses, and the recent technologies was applied to visualize the scale of the damaged Woomyeon-san (Mt.) and verify the performance of the simulator.

A Multi-sensor basedVery Short-term Rainfall Forecasting using Radar and Satellite Data - A Case Study of the Busan and Gyeongnam Extreme Rainfall in August, 2014- (레이더-위성자료 이용 다중센서 기반 초단기 강우예측 - 2014년 8월 부산·경남 폭우사례를 중심으로 -)

  • Jang, Sangmin;Park, Kyungwon;Yoon, Sunkwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.155-169
    • /
    • 2016
  • In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.

A Study on Backup PNT Service for Korean Maritime Using NDGNSS (NDGNSS 인프라를 활용한 국내 해상 백업 PNT 서비스 연구)

  • Han, Young-Hoon;Lee, Sang-Heon;Park, Sul-Gee;Fang, Tae-Hyun;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.42-48
    • /
    • 2019
  • The significance of PNT information in the fourth industrial revolution is viewed differently in relation to the past. Autonomous vehicles, autonomous vessels, smart grids, and national infrastructure require sustainable and reliable services in addition to their high precision service. Satellite navigation system, which is the most representative system for providing PNT information, receive signals from satellites outside the earth so signal reception power is low and signal structures for civilian use are open to the public. Therefore, it is vulnerable to intentional and unintentional interference or hacking. Satellite navigation systems, which can easily acquire high performance of PNT information at low cost, require alternatives due to its vulnerability to the hacking. This paper proposed R-Mode (Ranging Mode) technology that utilizes currently operated navigation and communication infrastructure in terms of Signals of OPportunity (SoOP). For this, the Nationwide Differential Global Navigation Satellite System (NDGNSS), which currently gives a service of Medium Frequency (MF) navigation signal broadcasting, was used to validate the feasibility of a backup infrastructure in domestic maritime areas through simulation analysis.

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.29-42
    • /
    • 2023
  • In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Development of a Prototype Automatic Sorting System for Dried Oak Mushrooms (건표고 자동선별을 위한 시작시스템 개발)

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.414-421
    • /
    • 1996
  • 한국과 일본의 경우 건표고를 외관의 품질상태 에 따라 12등급에서 16등급으로 구분하고 있다. 그리고 등급판정 작업은 임의로 추출한 샘플을 대상으로 전문 감정가에 의해 수작업으로 수행되고 있다. 건표고의 품질을 결정짓는 외관의 품질인자들은 갓과 내피에 고루 분포하고 있다. 본 논문에서는 컴퓨터 영상처리 시스템에 의거하여 개발한 건표고 자동 등급판정 및 선별 시작시스템의 구조와 기능 그리고 성능에 대하여 설명하였다. 개발한 시작시스템은 표고의 이송과 취급자동화를 위한 진동이송기, 반전장치, 컨베이어 이송장치와 두 세트의 컴퓨터 영상처리 시스템, 그리고 시스템 통괄제어를 위한 IBM PC AT호환 컴퓨터, 디지털 입출력 보드, 전공압실린더 구동제어를 위한 PLC등으로 구성하였다. 등급판정의 효율성 및 실시간 작업시스템을 고려하여 건표고의 등급판정은 두 세트의 컴퓨터 영상처리 시스템을 이용하여 이송되는 건표고의 갓 또는 내피 중 어디가 위를 향하는 지에 따라 두 단계에 걸쳐 독립적으로 판정을 수행하도록 하였다. 첫 번째 영상처리부에서는 갓표면 영상으로부터 4등급의 고품질 표고를 분류하며 두 번째 영상처리부에서는 내피표면 영상으로부터 중간 및 저품질 표고를 8개의 등급으로 분류한다. 실시간 영상정보처리를 목적으로 기존에 개발한 신경회로망을 이용한 등급판정 알고리즘을 시작시스템에 적용하였다. 개발한 시작기는 88% 이상의 등급판정 정확도를 보여 주었으며, 전공압시스템의 구동제약으로 인하여 표고 1개당 약0.7초의 선별시간이 소요되었다. 일조 선별라인의 경우 본 연구에서 제안한 시작기의 선별능력은 표고가 일차 처리부로 갓이 위로 올라와 있는 상태로 계속 공급된다면 시간당 대략 5,000여 개의 표고를 처리할 수 있을 것으로 기대된다.보강하여 가능하면 B-Pillar의 Middle이 Bending type collapse을 방지하여 Pelvis와 Door가 먼저 접촉하는 방법 등이 적용가능하다. 제작하기 이전에 설계된 부품에 대한 스프링 상수 및 내구특성을 체계적으로 규명하여 제품 시험의 횟수를 줄이고, 보다 정밀한 제품을 제작할 수 있도록 하기 위한 것이다.세포수는 초기 배반포기배에서 팽윤 배반포기배로 진행됨에 따라 두배에서 세배 정도 증가되었음을 알 수 있었다. 또한, differential labelling과 bisbenzimide기법에서 얻어진 각각의 총세포수를 비교하였을 때 총세포수는 발달의 진행 정도에 따라 증가되며 그와 동시에 동일한 군 간의 세포수도 거의 유사함을 알 수 있었다. 따라서, ICM과 TE를 differential labelling하는 기법은 수정란의 quality를 평가하는데 매우 유용한 기법으로서 착상전 embryo 발달을 연구하는데 효과적으로 이용될 수 있다는 것을 시사한다. 고도의 유의차를 나타낸 반면 비수구, 초생수로구 및 Bromegrass 목초구 간에는 아무런 유의차가 인정되지 않았다. 7. 농지보전 처리구인 배수구와 초생수로구는 비처리구에 비해 낮은 침두 유출량과 낮은 토양유실량을 나타내었다.구보다 14% 절감되는 것으로 나타났다.작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰

  • PDF

Study on Function Improvement and Application of D2MS (PDA 유량측정 관리시스템의 기능 개선 및 활용성 검토)

  • Lee, Kyoung-Do;Jung, Seung-Kwon;Kim, Nam-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.903-907
    • /
    • 2006
  • 수위, 우량, 유량, 유사량 등 수문자료 중에서 유량자료는 가장 많은 쓰임새를 갖고 있음에도 불구하고 신뢰도가 낮은 이유로 인해 많은 문제점을 안고 있는 것이 현실이다. 이렇게 유량측정자료의 신뢰도가 낮은 이유는 크게 5가지로 들 수 있는데 1)측정 수행자의 잦은 교체 등에 따른 조사역량 부족, 2)수행자별 유량측정 및 분석방법 상이, 3)장비의 유속검정 등 관리미흡 및 성능 저하, 4)유량측정 상당시간 경과 후 유량측정성과 정리로 오류 수정 곤란, 5)유량측정성과의 체계적인 관리 미흡 등이다. 이러한 문제점을 개선하고 현장에서의 유량측정 신뢰도를 향상시키기 위하여 (주)웹솔루스에서는 PDA를 이용한 유량측정 관리시스템을 개발하였으며 기존의 한국수자원공사에 국한된 기능을 건설교통부 한국건설기술연구원에서 활용이 가능하도록 프라이스컵을 이용한 유량측정이 가능하도록 유량측정 관리 시스템의 기능을 개선하였다. 현재 이 시스템 C/S 기반 및 웹 기반으로 개발되었으며, 2003년부터 2005년까지의 주요 댐 지점에서의 성과를 바탕으로 그 활용성을 검토하였다. 본 시스템을 기반으로 측정된 자료들은 사용자가 보유하고 있는 서버에 실시간으로 저장이 되며, 현 2006년에는 한국수자원공사에서 운영하고 있는 13개의 댐과 1개의 국가 하천에 대하여 총 59개의 관측지점에서 활용되고 있고 있다. 본 시스템 도입을 통해 유량측정성과가 체계적으로 관리되고 있으며, 향후 시스템에 대한 지속적인 유지 관리가 이루어진다면 오랜 기간에 걸쳐 축적된 많은 양의 유량자료는 수자원관리에 큰 역할을 수행할 수 있을 것으로 판단된다. 입력자료로 변환하도록 하는 자료 동화 기능, CE-QUAL W2 모형을 수행하는 기능 및 결과자료를 분석하는 기능으로 구성되어 있으며, 각 기능을 선택하면 해당 화면으로 GUI가 전환된다. 따라서 다량의 측정자료의 신뢰성을 유지하고 이를 모형의 입력자료로 활용하는 일련의 과정을 시스템화하기 때문에 자료의 이상적 유지 관리가 이루어지며 복잡한 2차원 수질해석 모형을 수월하게 운영할 수 있는 시스템으로 개발하였다.제외하면, 부자측정 방법에 의한 유량산정시 가장 큰 오차원인은 홍수시 측정된 유속측선의 위치와 홍수 전후로 측정된 횡단면상의 위치가 일치하지 않는 점과, 대부분 두 측정 구간의 평균값을 대푯값으로 사용한다는 점이다. 본 연구는 다년간의 유량 측정 및 검증 경험과 자료를 토대로 현장에서 부자를 이용하여 측정된 측정성과를 정확도 높은 유량자료로 산정하는데 있어서의 문제점을 도출하고, 이로 인해 발생하는 오차를 추정하여 그 개선방안을 제시해 보고자한다. 더불어 보다 정확한 유량 산정을 위한 기준과 범주를 제시하고자 한다.리적 특성을 잘 반영하며, 도시지역의 복잡한 배수시스템 해석모형과 지표범람 모형을 통합한 모형 개발로 인해 더욱 정교한 도시지역에서의 홍수 범람 해석을 실시할 수 있을 것으로 판단된다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험 지점 파악 및 주민대피지도 구축 등에 활용될 수 있을 것으로 판단된다. 있을 것으로 판단되었다.4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관

  • PDF

Development of Wearable Physical Activity Monitoring System (웨어러블 신체 생체 활동 모니터링 시스템 개발)

  • Park, Eun-Ju;Park, Do-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • Along with the development of ICT technology, wearable devices of various sizes and shapes have been developed. In addition, performance and specifications are rebuilt with IOT fusion products so that they can connect with the current smartphone. This is one of the general-purpose technologies of the 4th industrial revolution, which is spot-lighted with technology that changes the quality and environment of our lives. Along with this, as new technology products combining health care technology increases, various functions are provided to users who need it. Wearable technology is ongoing trend of technology development. It also sells products developed as products in the form of smart watches. At present, various related products are made in various ways, and it is recommended to use the Arduino processor in accordance with the application. In this study, we developed wearable physical activity monitoring system using open source hardware based TinyDuino. TinyDuino is an ultra-compact Arduino compatible board made on the basis of Atmega process Board, and it can be programmed in open source integrated development environment(named Sketch). The physical activity monitoring system of the welfare body can be said to be a great advantage, as a smart u-Healthcare system that can perform daily health management.