DOI QR코드

DOI QR Code

A Study on Backup PNT Service for Korean Maritime Using NDGNSS

NDGNSS 인프라를 활용한 국내 해상 백업 PNT 서비스 연구

  • Han, Young-Hoon (Korea Research Institute of Ships and Ocean Engineering) ;
  • Lee, Sang-Heon (Korea Research Institute of Ships and Ocean Engineering) ;
  • Park, Sul-Gee (Korea Research Institute of Ships and Ocean Engineering) ;
  • Fang, Tae-Hyun (Korea Research Institute of Ships and Ocean Engineering) ;
  • Park, Sang-Hyun (Korea Research Institute of Ships and Ocean Engineering)
  • 한영훈 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 이상헌 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 박슬기 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 황태현 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 박상현 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2019.01.23
  • Accepted : 2019.02.22
  • Published : 2019.02.28

Abstract

The significance of PNT information in the fourth industrial revolution is viewed differently in relation to the past. Autonomous vehicles, autonomous vessels, smart grids, and national infrastructure require sustainable and reliable services in addition to their high precision service. Satellite navigation system, which is the most representative system for providing PNT information, receive signals from satellites outside the earth so signal reception power is low and signal structures for civilian use are open to the public. Therefore, it is vulnerable to intentional and unintentional interference or hacking. Satellite navigation systems, which can easily acquire high performance of PNT information at low cost, require alternatives due to its vulnerability to the hacking. This paper proposed R-Mode (Ranging Mode) technology that utilizes currently operated navigation and communication infrastructure in terms of Signals of OPportunity (SoOP). For this, the Nationwide Differential Global Navigation Satellite System (NDGNSS), which currently gives a service of Medium Frequency (MF) navigation signal broadcasting, was used to validate the feasibility of a backup infrastructure in domestic maritime areas through simulation analysis.

4차 산업혁명 사회에서의 PNT(Position, Navigation, and Timing) 정보의 중요성은 과거와는 또 다른 의미를 가진다. 자율 주행차, 자율 운항선박, 스마트그리드 그리고 국가 주요 기간시설에서는 PNT 정보의 고정확성 이외에도 지속가능하고, 신뢰할만한 서비스를 요구하고 있다. PNT 정보를 제공하는 가장 대표적인 시스템인 위성항법시스템은 지구 대기 밖 위성으로부터 신호를 수신하므로 수신 신호전력이 낮고, 민간신호의 경우 신호구조가 공개되어 있다. 따라서 비의도적 또는 의도적인 간섭이나 해킹에 취약하다. 사용자 관점에서 적은 비용으로 높은 성능의 PNT 정보를 쉽게 획득할 수 있는 위성항법시스템은 해킹의 취약성 때문에 이에 대한 보완이 요구된다. 이에 따라 응용분야 별로 다양한 연구가 진행되고 있으며, 본 논문에서는 기회신호 측면에서 현재 구축, 운영 중인 해상항법 및 통신 인프라를 활용한 R-Mode(Ranging Mode) 기술에 대해 다룬다. 이를 위하여 현재 전국망의 중파 비컨 기반 보강정보를서비스하고 있는 NDGNSS(Nationwide Differential Global Navigation Satellite System) 인프라에 대해 알아보고, 시뮬레이션을 통하여 국내 해상분야에서의 백업 PNT 기술로서의 가능성을 확인한다.

Keywords

GHMHD9_2019_v43n1_42_f0001.png 이미지

Fig. 1 Predicted coverage accuracy using AIS, MF DGNSS, and eLoran R-Mode from ACCSEAS Source : Feasibility Study of R-Mode, Johnson et al., 2014

GHMHD9_2019_v43n1_42_f0002.png 이미지

Fig. 2 AIS R-Mode positioning errors in China Source : Development of an AAPS, Hu et al., 2015

GHMHD9_2019_v43n1_42_f0003.png 이미지

Fig. 3 Maritime NDGPS site and coverage in South Korea

GHMHD9_2019_v43n1_42_f0004.png 이미지

Fig. 4 HDOP for the maritime NDGNSS sites in Korea

GHMHD9_2019_v43n1_42_f0005.png 이미지

Fig. 5 HDOP for the maritime NDGNSS combined Loran-C sites in Korea

GHMHD9_2019_v43n1_42_f0006.png 이미지

Fig. 6 Accuracy from MF R-Mode with eLoran (weak signal environment)

GHMHD9_2019_v43n1_42_f0007.png 이미지

Fig. 7 Accuracy from MF R-Mode with eLoran (typical signal environment)

Table 1 The coordinates of Loran-C transmitter stations in Korea

GHMHD9_2019_v43n1_42_t0001.png 이미지

Table 2 Maritime NDGNSS stations’ coordinates in Korea

GHMHD9_2019_v43n1_42_t0002.png 이미지

Table 3 IALA requirement for a backup system for a general navigation

GHMHD9_2019_v43n1_42_t0003.png 이미지

References

  1. Andre, C. (2018), "The Implementation of a Resilient Position, Navigation and Timing Solution in Canada", IALA, pp. 4-5.
  2. Canadian Coast Guard(2018), "Review to Implement a Resilient Position, Navigation and Timing Solutions for Canada", Mariner's Workshop, January 2018, p. 13.
  3. Charles, C. (2016) "Assured PNT," Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, September 2016, pp. 931-945.
  4. Dalian Maritime University VDES Team[Dalian](2018) "Research of VDES R-Mode", ENAV Intersessional Meeting, Presentation.
  5. European Commission(2018), "European Radio Navigation Plan", Report, November 2018, p. 57.
  6. Hong, J. Y. (2016) "No GPS Signal, GPS Interference from N. Korea," SBS news, April 2016, http://news.sbs.co.kr/news/endPage.do?news_id=N1003501467&plink=ORI&cooper=NAVER.
  7. Hu, Q., Jiang, Y., Zhang, J., Sun, X. and Zhang, S. (2015) "Development of an Automatic Identification System Autonomous Positioning System", Sensors, November 2014. pp. 28587-28588.
  8. International Association of Marine Aids to Navigation and Lighthouse [IALA](2012), "GNSS Vulnerability and Mitigation Measures", IALA Recommendation, Edition 3.0, p. 16.
  9. Interreg Baltic Sea Region [Interreg](2017), Ranging Mode for the Baltic Sea, [Internet], cited January 22 2019, https://projects.interreg-baltic.eu/projects/r-mode-baltic-90.html.
  10. Johnson, G. and Swaszek, P. (2014) "Feasibility Study of R-Mode combining MF DGNSS, AIS, and eLoran Transmissions", German Federal Waterways and Shipping Administration, Final Report, September 2014.
  11. Kaplan, E. and Hegarty, C. (2006), Understanding GPS Principles and Applications, Artech House, Second Ed,. pp. 328-332.
  12. Lee, C., Shin, M., Hwang, S., Lee, S. and Yang, S. (2013), "A study on the optiomal geometrical placement of eLoran stations in Korea,"Jounal of Navigation and Port Research, Vol. 37, No. 1, pp. 35-40. https://doi.org/10.5394/KINPR.2013.37.1.35
  13. London Economics(2017), "Economic impact to the UK of a disruption to GNSS,", Showcase Final Report, UK Space Agency, April 2017, pp. 3-5.
  14. Martin, M. (2018) "BinoNav(R) - A New Positioning System for Maritime," Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, Florida, September 2018, pp. 1728-1735.
  15. National Maritime PNT Office [NMPNT](2018), "Introduction,", cited March 2018, http://www.ndgps.go.kr/html/kr/intro/present_conditions_coordinates.html.
  16. Radio Navigation and Timing Foundation [RNTF] (2018) "$5M more for GPS Backup Demo-Draft 2019 NDAA,", Article, May 2018, https://rntfnd.org/2018/05/09/5m-more-for-gps-backup-demo-draft-2019-ndaa/.
  17. Seo, K., Park, S. and Fang, T. (2018) "Analysis of Positioning Performance to Meet HEA Requirement in eLoran Testbed", The 16th IAIN World Congress 2018, November 2018, pp. 5-3.
  18. U.S. Department of Defense, Department of Security and Department of Transportation[U.S.](2017), "2017 Federal Radionavigation Plan (DOT-VNTSC-OSTR-15-01)", September 2017, p. 54.
  19. Williams, P. and Hargreaves, C. (2018) "UK eLoran-Initial Operational Capability at the Port of Dover", International Technical Meeting(ITM) of The Institute of Navigation, January 2013, pp. 392-402.