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[Abstract]

In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three 

major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five 

generative models—vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE—to generate 

independent variables that mimic the patterns of existing training data. To mitigate the bias in model 

training, we derive values for the dependent variables using random forests and deep neural networks, 

enriching the training datasets. These datasets are integrated with existing data to form comprehensive 

solar irradiance prediction models. The experimentation revealed that the augmented datasets led to 

significantly improved model performance compared to those trained solely on the original data. 

Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the 

intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely 

aligned with the real-world variability of solar irradiance. The proposed method is expected to address 

the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby 

contributing to the operation of solar power systems for sustainable development. 
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[요   약]

본 논문은 서울, 부산, 인천과 같은 대한민국의 주요 도시들을 대상으로 일사량 예측 정확도를 

향상하기 위한 방법론을 제안한다. 제안한 방법론은 먼저 GAN, CTGAN, Copula GAN, WGANGP, 

TVAE 등 다섯 가지 생성 모델을 이용하여 기존 학습 데이터와 유사한 독립 변수들을 생성한다. 

다음으로 모델 학습에서의 데이터 편향성을 개선하고자, 생성한 독립 변수들에서 각각 랜덤 포레

스트와 심층 신경망을 통해 종속 변숫값을 도출하여 학습 데이터 셋을 구축하고, 이를 기존 학습 

데이터 셋과 결합하여 예측 모델을 구성한다. 실험 결과, 증강된 데이터 셋으로 학습한 모델들은 

기존 데이터 셋으로 학습한 모델들보다 향상된 성능을 나타내었다. 특히 CTGAN은 복잡한 다변량 

데이터 관계를 효과적으로 다루는 메커니즘으로 인해 우수한 결과를 도출하였으며, 생성된 데이

터는 일사량의 다양한 변화와 실제 변동성과 효과적으로 반영하였다. 제안한 방법론은 고품질의 

생성 데이터로 학습 데이터를 증강함으로써, 데이터 부족 현상 문제를 다룰 수 있을 뿐만 아니라 

지속 가능한 발전을 위한 태양광 발전 시스템 운영에도 이바지할 수 있을 것으로 기대한다.

▸주제어: 태양 에너지 예측, 생성 데이터 증강, 딥러닝 모델, 환경 지속 가능성, 데이터 부족 솔루션 

I. Introduction

In our globally interconnected society, a reliable 

energy and power supply has become an essential 

cornerstone for maintaining consistent economic 

growth. The rapid acceleration of urbanization and 

industrialization across the globe is driving an 

unprecedented surge in energy demand. 

Historically, fossil fuels have been the primary 

source to meet this demand, but the global energy 

market is now undergoing a significant 

transformation. Several factors have prompted this 

shift. Firstly, reserves of fossil fuels are finite and 

dwindling. Secondly, considerable environmental 

implications are linked to their use, such as 

greenhouse gas emissions leading to climate 

change. Lastly, substantial economic challenges are 

associated with the extraction, transportation, and 

usage of these fuels. These constraints have 

catalyzed a transition towards renewable energy 

sources that are more sustainable and 

economically viable in the long run [1]. Solar 

energy is emerging as a leading player in this 

renewable revolution due to its eco-friendly 

characteristics and cost-effectiveness, which have 

garnered considerable global attention [2]. South 

Korea is one nation that has been particularly 

proactive in adopting solar power within its energy 

portfolio. By 2020, South Korea had successfully 

established solar power facilities with an impressive 

capacity of 5.5 GW. This achievement underscores 

South Korea's commitment to renewable energy 

adoption and signals its recognition of solar 

power's crucial role in future energy security [3]. 

This continued investment in solar infrastructure 

suggests a promising trajectory for growth within 

South Korea's solar sector. 

The essence of solar power systems lies in their 

ability to transform sunlight into electricity using 

solar panels. However, the generation of solar 

energy has its challenges. Predominantly, the 

output is susceptible to fluctuations driven by 

various environmental factors, rendering its 

prediction complex and demanding cutting-edge 

technical approaches [4]. One primary determinant 

of solar energy production is solar irradiance [5]. 

Thus, ensuring precise irradiance forecasting is not 

merely a technical challenge but a necessity. Such 

accuracy bolsters the efficiency of solar energy 

systems and fortifies their stability, emphasizing the 

crucial role of irradiance prediction in the 

overarching framework of renewable energy 
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research [6]. Given its critical implications for 

energy production, solar irradiance prediction has 

been a focal point of numerous research 

endeavors. Traditionally, these predictions have 

been anchored in time series analysis, leveraging 

historical data on temperature, humidity, and wind 

speed as proxies for environmental variables [7]. 

Conventional methods often use statistical 

approaches or models such as the autoregressive 

integrated moving average (ARIMA) to analyze these 

time-series data. However, these traditional 

techniques must be revised when grappling with 

environmental variables' non-linear and intricate 

correlations [8].

This realization has ushered in a paradigm shift 

towards artificial intelligence-based methodologies. 

Machine learning (ML) and, more prominently, deep 

learning (DL) technologies have taken center stage 

in recent irradiance prediction efforts, 

demonstrating their prowess in decoding complex 

time-series data patterns [9, 10]. Deep learning 

techniques consistently showcase superior 

prediction performance, especially when leveraging 

architectures such as ensemble learning and 

hybrid models [10]. Voyant et al. [9] undertook a 

comparative study on machine learning-based 

approaches for solar radiation predictions, pitting 

algorithms such as artificial neural networks 

(ANNs) and ARIMA against each other. Their 

findings underscored the exemplary prediction 

performance of support vector machines (SVM) and 

random forest (RF) algorithms. Similarly, Lee et al. 

[11] juxtaposed the performance of four ensemble 

learning models for irradiance prediction, noting 

that ensemble methods outperformed standalone 

models, reducing prediction variance. A study by 

Kumari et al. [12] weighed the prediction prowess 

of various deep learning architectures, concluding 

that hybrid deep learning models offer optimal 

performance. Yan et al. [13] innovatively combined 

the gated recurrent unit (GRU) with attention 

mechanisms, crafting a hybrid deep learning model 

adept at seasonally adjusted short-term solar 

irradiance prediction, surpassing conventional 

single-model predictions in accuracy.

After exploring various models and techniques, it 

becomes evident that the core challenge to 

achieving superior solar irradiance predictions lies 

in the available data's abundance and quality. 

Traditional approaches in the field have 

predominantly hinged on leveraging extensive data 

repositories, often spanning extensive durations, to 

ensure reliable short-term and long-term 

irradiance forecasting [5, 7, 8]. Despite these 

efforts, a significant research gap exists in 

ensuring optimal prediction accuracy when the 

available training data is scanty or insufficient [14]. 

In response to this challenge, the rise of generative 

models, especially generative adversarial networks 

(GANs) and their variants, offers a beacon of hope. 

These models have been developed to generate 

data that closely resembles genuine datasets, thus 

compensating for limited training data and paving 

the way for more robust prediction algorithms [15]. 

Figure 1 elucidates this concept further by 

presenting a schematic overview of a foundational 

generative model's architecture. Their unparalleled 

ability to produce realistic data has led generative 

models to find applications in diverse domains, 

from image processing and computer vision to 

natural language processing. Moreover, our 

current investigation underscores their immense 

promise in time-series analysis, particularly for 

refining solar irradiance forecasting in scenarios 

with limited data.

The deployment of GAN models for time-series 

predictions has become increasingly prominent. 

Improved forecasting performances have been 

demonstrated by generating supplementary data 

through these generative models or by integrating 

GAN with other deep learning architectures. Huang 

et al. [16] proposed a solar power generation 

prediction using conditional GANs (CGAN), 

continually refining prediction accuracy by 

juxtaposing real and predicted values through 

bidirectional long short-term memory (Bi-LSTM). Li 
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et al. [17] combined the strengths of Wasserstein 

GAN (WGAN) and long short-term memory (LSTM) 

after segmenting solar irradiance output signals 

into multiple sub-sequences, integrating individual 

component predictions for the final output. Moon et 

al. [18] proffered a two-tiered data generation 

approach for enhancing electric load forecasting 

and amalgamating generated and authentic 

datasets for model perfection. Wang et al. [19] used 

GANs to bolster weather data for solar power 

generation predictions, training a convolutional 

neural network (CNN)-based classifier on original 

and generated datasets. Fekri et al. [20] adopted 

the recurrent GAN (R-GAN) for generating energy 

consumption data for smart grid operations, 

validating that GAN-based data can train energy 

prediction models. Tian et al. [21] anchored their 

building energy consumption predictions on parallel 

learning theories using GANs, showing that hybrid 

datasets lead to superior forecasting outcomes.

Drawing inspiration from these studies, we 

undertake a comparative exploration of five unique 

generative models to bolster limited training 

datasets. A hallmark of our research is using 

genuine solar irradiance data from three major 

South Korean metropolitan regions: Seoul, Busan, 

and Incheon. Our proposed methodology 

intertwines generative models to refine training 

datasets, subsequently deploying RFs and deep 

neural networks (DNNs) for rigorous solar 

irradiance prediction. This method's efficacy is 

corroborated through stringent evaluations using 

root mean square error (RMSE) and mean absolute 

error (MAE) metrics. Ultimately, our findings 

promise to be a beacon for the energy and data 

science sectors, emphasizing the quintessential role 

of generative models in tackling data inadequacies 

and fortifying prediction accuracy.

The structure of this paper is meticulously 

organized as follows: Section 2 elucidates the 

methodologies proposed in this paper. Section 3 

offers a rigorous analysis of the predictive 

performance achieved in our research. Section 4 

draws the study to a close by presenting the 

conclusions, highlighting limitations, and suggesting 

future research trajectories.

II. Methodology

2.1 Data Collection and Preparation

To emulate real-world scenarios of data scarcity, 

our study utilized solar irradiance data from three 

major metropolitan cities in South Korea: Seoul, 

Busan, and Incheon [5]. The datasets encompass 

the period from January 1, 2019, to December 31, 

2020. For training and validation, data from 2019 

served as the training set, while the entirety of the 

2020 data was earmarked for testing. Table 1 

provides a detailed breakdown of the features 

encapsulated in our datasets. These variables have 

been carefully chosen to encapsulate temporal, 

climatic, and solar attributes influencing irradiance 

levels.

Fig. 1. Schematic Diagram of Vanilla GAN’s Structure
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Variables Description Variable Type

Monthsin

(Input)

Sine Value of 

Month

Continuous on 

[-1, 1]

Monthcos

(Input)

Cosine Value of 

Month

Continuous on 

[-1, 1]

Daysin

(Input)

Sine Value of 

Day

Continuous on 

[-1, 1]

Daycos

(Input)

Cosine Value of 

Day

Continuous on 

[-1, 1]

Hoursin

(Input)

Sine Value of 

Hour

Continuous on 

[-1, 1]

Hourcos

(Input)

Cosine Value of 

Hour

Continuous on 

[-1, 1]

Temp

(Input)

Temperature 

(in Degrees Celsius)
Continuous

Humi

(Input)

Relative Humidity

(in Percentage)
Continuous

WS

(Input)

Wind Speed 

(in m/s)
Continuous

Solar

(Output)

Solar Irradiance

(in MJ/m2)
Continuous

Table 1. Information on Dataset Features

2.2 Model Proposition for Data Augmentation

In this research, we address the challenge of 

solar irradiance prediction under conditions of data 

insufficiency. We propose a novel approach that 

leverages the capabilities of generative models to 

supplement the lack of training data and enhance 

predictive efficiency. Our proposed model involves 

a two-step process, which is visually represented in 

Figure 2, illustrating these two integral steps of our 

model proposition:

� Input Data Generation: This step synthesizes 

new input data that replicates the 

characteristics and length of the original 

dataset. It is not a mere duplication; the 

generative models are trained to understand 

the intrinsic patterns and variations in the 

original data and then reproduce those 

nuances in the generated data. This process 

ensures that our augmented data maintains 

the richness of information while providing 

additional diversity for training.

� Output Data Construction: After synthesizing 

the input data, we employ a pre-trained 

regression model, which has been initially 

trained on the original dataset. We obtain the 

corresponding output data by feeding the 

generated input data into this model. This step 

ensures that our synthetic data pairs (both 

input and output) maintain a semblance to 

real-world data scenarios.

The efficacy of our data augmentation relies 

significantly on the capabilities of the chosen 

generative models. Here is a comprehensive 

understanding:

� Vanilla GAN: A foundational model in the GAN 

family, Vanilla GAN is a trailblazer in generative 

modeling. Recognized for consistently 

generating high-quality data, its primary 

strength lies in establishing a benchmark for 

other advanced models. Given its simplicity yet 

robust performance, it is the litmus test against 

which other GANs are often evaluated.

� Conditional tabular GAN (CTGAN): Building on 

the core GAN architecture, CTGAN [22] is 

tailored for tabular datasets. It employs 

Fig. 2. Process Flow of Data Augmentation Using Generative Models
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quantification mechanisms to interpret and 

generate structured data, addressing the 

challenges of non-sequential patterns making 

it ideal for datasets needing detailed pattern 

recognition.

� Copula GAN: Expanding on standard data 

generation techniques, Copula GAN [23] 

incorporates the Copula function, which 

excels at identifying relationships between 

multivariate distributions. Mimicking data 

distribution creates a genuine-seeming 

correlation among generated data points, 

ensuring the output appears authentic and 

preserves realistic interactions between 

variables.

� Wasserstein GAN with Gradient Penalty 

(WGANGP): Evolving from WGAN, the 

WGANGP [24] incorporates a gradient penalty. 

This addition aids the training by adjusting 

the model's parameters whenever the 

discriminator finds distinguishing real from 

generated data challenging, ensuring 

sustained data quality throughout iterations.

� Temporal Variational Autoencoder (TVAE):

Specifically designed for time-series data, 

TVAE [25] encapsulates the nuances of 

temporal patterns. Unlike standard 

autoencoders, it considers the sequence, 

chronology, and time-bound correlations, 

making it a preferred choice when dealing 

with datasets where the sequence and 

time-based patterns play a pivotal role.

Effectively predicting time-series data often 

necessitates the availability of a comprehensive 

dataset. This research addresses this need by 

leveraging a generative model trained on one 

year's input data to reproduce a dataset of 

equivalent length. We employed two 

state-of-the-art regression techniques, RF and 

DNN, to deduce the solar irradiance corresponding 

to this synthetically generated input.

� RF: As an ensemble learning method, RF offers 

Fig. 3. Structure of the Proposed Enhanced Data Format
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a holistic approach that amalgamates the 

results of multiple decision trees to yield a 

more accurate and stable prediction [26]. It is 

particularly lauded for its ability to deliver 

reliable outcomes without requiring exhaustive 

hyperparameter tuning, distinguishing it as a 

versatile and effective algorithm for various 

prediction tasks [27].

� DNN: Contrasting traditional machine learning 

models, DNNs possess a deeper architecture, 

enabling them to model intricate relationships 

inherent in complex datasets [28]. The 

multi-layered nature of DNNs facilitates the 

capture of subtle patterns and dependencies, 

especially pivotal in time-series data where 

temporal correlations are prevalent [29].

Opting for a dual-regression strategy, which 

integrates both RF and DNN, was a deliberate and 

methodical decision underpinned by empirical 

evidence and the inherent strengths of each 

technique [30]. Combining predictions and features 

learned from RF and DNN ensures a well-rounded 

representation in our augmented dataset. Such a 

synthesis ensures that the strengths of one model 

can compensate for the limitations of the other, 

leading to a diverse and comprehensive dataset. 

This approach reinforces the reliability of our 

augmented dataset and makes it a more holistic 

training ground for subsequent predictive models. 

By synergizing the outputs of regression models 

trained on real-world data through this approach, 

our dataset burgeoned from an initial count of 

4,015 data points to a formidable 12,045 for each 

region, as delineated in Figure 3. Such an 

expansive and enriched dataset lays solid 

groundwork, priming us for a more dependable and 

precise final prediction performance evaluation.

2.3 Solar Irradiance Prediction

To achieve an intricate and rigorous evaluation 

of predictive capabilities, we resorted to both RF 

and DNN models as embodied within the Orange3 

framework. Following the generation of the 

augmented dataset—a fusion of real and 

synthetically generated data using RF and DNN—we 

trained both RF and DNN models again, exploiting 

the combined dataset's richness. The goal was to 

predict solar irradiance values for the remaining 

evaluation set.

III. Results

3.1 Implementation and Evaluation Framework

In pursuit of advanced solar irradiance 

forecasting, our experimental efforts unfolded 

within a Python 3.9.0 environment, utilizing the 

capabilities of TensorFlow 2.5.0 and PyTorch 1.10.2. 

These leading-edge deep learning frameworks were 

pivotal for the meticulous execution and 

optimization of our generative models, ensuring 

peak performance and scalability. Our methodology 

was expansive, integrating a suite of sophisticated 

generative architectures: Vanilla GAN, CTGAN, 

Copula GAN, WGANGP, and TVAE, each 

contributing to the goal of enhanced solar 

irradiance prediction.

Grasping the nuances of how generative models 

produce and refine synthetic data is critical. Such 

an understanding is pivotal, as it empowers 

professionals to employ synthetic data to reflect or 

supplement actual datasets accurately. The 

t-distributed stochastic neighbor embedding 

(T-SNE) visualizations serve as a vital interpretive 

mechanism, showcasing how each generative model 

captures the intricate patterns and variances 

intrinsic to solar irradiance data. By comparing the 

T-SNE plots of original and synthesized data, we 

can critically assess the models' performance in 

creating data that is not only statistically similar 

but also structurally representative of the complex 

dynamics observed in solar irradiance patterns. 

Such comparative analysis is indispensable for 

confirming that the augmented data maintains the 

multidimensional relationships in actual irradiance 

measurements. Our study highlights this process by 
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providing visualizations in Figures 4–6, utilizing 

T-SNE to distill complex data effectively.

The practical implications of generative models 

are underscored by interpreting these T-SNE 

visualizations. For instance, the synthetic data 

generated by the CTGAN model exhibits a high 

degree of similarity with the original dataset, 

indicating its proficiency in replicating intricate 

data patterns. This fidelity is crucial for 

applications where precise modeling of solar 

patterns is required. Conversely, the synthetic data 

from the GAN model shows a marked distinction 

from the original dataset in T-SNE visualizations, 

suggesting a potential shortfall in capturing 

complex data relationships. Such discrepancies 

could harm the model's effectiveness in accurately 

forecasting solar irradiance.

The Copula GAN and WGANGP models present 

synthetic data that, while not a perfect match, 

resembles the original data. This level of 

approximation could be beneficial in situations 

where an exact replication of the data is 

unnecessary. However, a general representation is 

still needed, such as in the early stages of model 

training. Meanwhile, the synthetic data from the 

TVAE model tends to cluster, implying a 

Fig. 4. T-SNE Visualization of Original and Augmented Data in Seoul
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concentration on particular aspects of the dataset. 

This characteristic could be advantageous when the 

objective is to model specific phenomena within the 

solar irradiance field.

The selection of an appropriate generative model 

hinges on the particular requirements of the task. 

The CTGAN model is suitable for cases where 

high-fidelity replication is paramount. The 

WGANGP or Copula GAN models are apt choices 

when the overarching data trend is more important 

than granular details. The TVAE model emerges as 

the preferred option for targeting specific features 

within a dataset. Ultimately, the insights gained 

from these visualizations inform the selection and 

application of generative models in solar irradiance 

forecasting. They ensure that the models employed 

are theoretically sound and capable of generating 

data that enhances the accuracy and reliability of 

solar irradiance predictions in real-world 

scenarios.

3.2 Augmented Data Prediction Performance

We harnessed the RF and DNN models for the 

subsequent predictive performance evaluation, both 

implemented within the Orange3 framework. 

Orange3, an open-source powerhouse, streamlines 

numerous tasks, from data mining to machine 

learning and even intricate tasks such as image 

Fig. 5. T-SNE Visualization of Original and Augmented Data in Busan
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and time-series analysis. Its intuitive, no-coding 

interface benefits non-programmers and students 

eager for tangible data analytics experiences [31]. 

Among the algorithms at our disposal, the RF, an 

ensemble learning method, stands out, offering 

swift learning rates and impressive performance 

metrics across various applications. The evaluation 

of the predictive capabilities of our models relied 

heavily on two robust metrics: RMSE and MAE.

In predictive modeling, the quality and quantity 

of training data play a pivotal role in determining 

the accuracy and reliability of predictions. Our 

investigation aimed to refine the solar irradiance 

prediction performance across three critical 

regions: Seoul, Busan, and Incheon. Recognizing 

this, our study leveraged the capabilities of RF and 

DNN models to augment the original dataset. 

Specifically, after generating supplementary 

datasets using both RF and DNN, we integrated 

these enhanced datasets to form a comprehensive 

and enriched training set. This newly formed 

dataset, inherently more robust and encompassing 

than its predecessor, was subjected to further 

learning using both RF and DNN.

Fig. 6. T-SNE Visualization of Original and Augmented Data in Incheon
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Models Seoul Busan Incheon

Original Data 0.772 0.807 0.692

Vanilla GAN 0.357 0.326 0.287

CTGAN 0.350 0.321 0.280

Copula GAN 0.355 0.329 0.282

WGANGP 0.352 0.333 0.289

TVAE 0.361 0.324 0.292

Table 2. MAE Comparison with Random Forest

Models Seoul Busan Incheon

Original Data 0.967 1.070 0.906

Vanilla GAN 0.494 0.535 0.403

CTGAN 0.491 0.535 0.398

Copula GAN 0.495 0.546 0.395

WGANGP 0.494 0.544 0.407

TVAE 0.505 0.538 0.416

Table 3. RMSE Comparison with Random Forest

The data in Tables 2 and 3 robustly quantify the 

RF model's improved predictive performance. Using 

MAE and RMSE as benchmarks, the model trained 

on data from generative models delivered more 

accurate predictions than the original data across 

Seoul, Busan, and Incheon. This finding is a 

testament to the enhanced capability of generative 

models in refining solar irradiance forecasting.

� Table 2 (MAE): For Seoul, data augmented 

using CTGAN registered the lowest MAE of 

0.350, followed closely by WGANGP at 0.352, 

notably reducing the MAE from the original 

data's 0.772. Incheon and Busan followed a 

similar trend, with CTGAN and WGANGP often 

delivering the most refined predictions. This 

result underscores the transformative role of 

generative models in enhancing prediction 

accuracy.

� Table 3 (RMSE): When focusing on RMSE, a 

measure that gives a higher penalty to larger 

prediction errors, the CTGAN-augmented data 

for Seoul and Incheon yielded the lowest RMSE 

values of 0.491 and 0.395, respectively. Both 

Vanilla GAN and CTGAN achieved an RMSE of 

0.535 for Busan, marking a significant reduction 

from the original data's RMSE of 1.070.

Models Seoul Busan Incheon

Original Data 0.799 0.874 0.780

Vanilla GAN 0.379 0.357 0.320

CTGAN 0.369 0.323 0.298

Copula GAN 0.354 0.327 0.297

WGANGP 0.379 0.343 0.320

TVAE 0.358 0.332 0.308

Table 4. MAE Comparison with DNN

Models Seoul Busan Incheon

Original Data 0.951 1.043 0.924

Vanilla GAN 0.545 0.623 0.478

CTGAN 0.527 0.545 0.426

Copula GAN 0.507 0.560 0.429

WGANGP 0.550 0.588 0.470

TVAE 0.515 0.560 0.453

Table 5. RMSE Comparison with DNN

In a deeper architecture, Tables 4 and 5 detail 

the performance metrics of the DNN. The DNN 

model, similar to the RF model, showcased marked 

improvements when trained on augmented data.

� Table 4 (MAE): The MAE values for the DNN 

trained on Copula GAN-augmented data stood 

out for Seoul and Incheon, registering values of 

0.354 and 0.297, respectively, substantial 

improvements over the original data's values of 

0.799 and 0.780. In contrast, for Busan, the 

CTGAN-augmented data led to the lowest MAE 

value of 0.323.

� Table 5 (RMSE): For RMSE, the Copula GAN 

model was particularly effective for Seoul, 

bringing down the RMSE to 0.507 from the 

original 0.951. Incheon, too, saw its lowest 

RMSE, with CTGAN at 0.426. Busan showcased a 

more even distribution with minor variations in 

RMSE across the generative models, but CTGAN 

marginally led the pack with an RMSE of 0.545.

Upon thoroughly scrutinizing the presented 

tables and performance metrics, it becomes evident 

that models trained on meticulously augmented 

data using generative models consistently 

outperform those trained solely on the original 

dataset. CTGAN stands out, frequently delivering 
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the most accurate predictions. This detailed 

analysis underscores the importance and 

effectiveness of our proposed data augmentation 

and iterative training methodology. It highlights the 

transformative potential of combining generative 

models with robust predictive algorithms such as 

RF and DNN in solar irradiance prediction.

IV. Conclusions

In this study, we harnessed the power of 

generative models to address the challenge of 

limited training data, seeking to optimize the 

performance of predictive models. Deployed within 

a Python 3.9.0 environment and leveraging 

state-of-the-art deep learning frameworks such as 

TensorFlow 2.5.0 and PyTorch 1.10.2, our 

methodology capitalized on advanced generative 

architectures, including Vanilla GAN, CTGAN, 

Copula GAN, WGANGP, and TVAE. The utility of 

these models became evident in their capacity to 

produce high-quality and consistent data, 

reinforcing the transformative potential of our data 

augmentation strategy. A cornerstone of our 

methodology was the rigorous validation of the 

synthesized data. Employing T-SNE, renowned for 

its capability to retain high-dimensional data 

structures, we could ensure that our augmented 

data mirrored the inherent characteristics and 

distribution of the original datasets.

Our results, anchored on RF and DNN models, 

showcased a pronounced enhancement in 

predictive accuracy across pivotal regions: Seoul, 

Busan, and Incheon. The augmented datasets, 

integrated from both RF and DNN outputs, created 

a comprehensive training set, further empowering 

the predictive prowess of our models. A granular 

examination of our results, as depicted in Tables 2

–5, underscores the significant advantages of 

leveraging augmented data. Notably, CTGAN 

frequently outperformed other generative models, 

particularly in its capacity to minimize MAE and 

RMSE values. Drawing from our findings, the 

marriage of generative models with predictive 

algorithms manifests as a game-changing strategy, 

especially in domains like solar irradiance 

prediction. This paradigm addresses the limitations 

of sparse training data and offers an innovative 

approach that can significantly influence business 

decision-making.

Our investigation into solar irradiance prediction 

using generative models within the Orange3 

framework has yielded promising results. However, 

it is important to note that this study was 

constrained by computational resources, precluding 

advanced deep learning techniques and exploring 

transfer learning to enhance model generalizability. 

Consequently, we could not delve into the 

transferability of the models to diverse geographic 

locations, which is essential for establishing the 

models' versatility in different environmental 

contexts. Moreover, the analysis did not modify the 

internal mechanics of the generative models, which 

could have provided deeper insights into their 

predictive capabilities. Future studies should aim to 

apply these models across varied locales to confirm 

their applicability and to harness more powerful 

computing resources, allowing for the 

incorporation of sophisticated machine learning 

algorithms that could further refine the models' 

accuracy and reliability.

Nevertheless, the vast potential of our 

methodology extends beyond the realm of solar 

irradiance prediction. Its versatility can be tapped 

across diverse challenges in various sectors, 

fortifying its contribution to the evolving landscape 

of data science. Despite the significant strides 

made, our methodology has its limitations. Future 

studies might probe into potential edge cases where 

generative augmentation might falter. Exploring 

and refining other generative architectures tailored 

for specific prediction challenges can further 

broaden the horizons of this research domain. As 

we navigate this exciting juncture, a continued 

focus on refining and expanding our 



A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction   41

methodological arsenal promises a future teeming 

with innovation and impactful solutions.
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