• 제목/요약/키워드: 지붕용 태양광발전

검색결과 5건 처리시간 0.017초

공동주택의 지붕용 BIPV시스템 성능 분석 연구 (A Study Analysis on Roof BIPV System Performance of the Apartment Building)

  • 김승범;박정로;김주형;김재준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2012
  • Exhaustion of fossil fuels and continued high oil prices, global warming, climate change and to respond to the development and use of alternative energy technologies is expanding rapidly throughout the world. Recently, character of domestic building is appearing by along with economic growth, high-rise, large size, congestion. For this reason, the amount of electrical energy used in a building is increasing. In this study, the applicability of PV modules that are used as roofing and efficiency analysis, and more from the building of BIPV modules built using the activation of alternative energy sources in Korea are aimed want done.

  • PDF

한국 산업용 건물지붕 적용 PV에 의한 발전량 및 CO2 분석연구 (A Study on Electric Capacity and CO2 by the Roof Top PV System of the Industrial Building in Korea)

  • 김지수;이응직;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.131-136
    • /
    • 2010
  • The purpose of this study is to provide foundational data for expansion of solar generation in building application, a clean energy, by introducing applicability of solar power generation system on roofs of industrial buildings and computing expected amounts of power and carbon dioxides reduction. As methodologies of this study, after reviewing 120,000 domestic factories to verify the BIPV feasibility for industrial building sthrough theoretical considerations of solar generation system, we calculated BIPV application methods and subsequent expected power generation quantity and carbon dioxide reductions through roof type analysis. we analyzed four cases of expected power generation amounts of solar batteries according to application methods, and when considering that the main type of roofs are slant roofs according to the investigation result about roof forms of domestic industrial complexes, we believe that the module angle of a slant roof around $17^{\circ}$(case3) is most suitable for the application. Finally, we came up with 517,944[TOE] as the corresponding petroleum tonnage based on this computed expected power generation amount and the amount of 1,214,836[$tCO_2$] carbon dioxide reductions by calculating them by energy sources.

평지붕 설치 태양광시스템의 표면형태 조사·분석 (Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System)

  • 이응직
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구 (Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System)

  • 윤종호;한규복;안영섭
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

주택지붕용 2kWp BIPV시스템의 성능 실험 및 전기 부하 감당에 관한 연구 (The Performance and Energy Saving Effect of a 2kWp Roof-Integrated Photovoltaic System)

  • 이강록;오명택;박경은;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.13-19
    • /
    • 2006
  • The efficiency of building-integrated photovoltaic(BIPV) system is mainly determined by solar radiation and the temperature of PV modules. The performance of BIPV systems is reported to be different from that of conventional PV systems installed in the open-air. This paper presents the relationship of solar radiation and electricity generation from a 2kWp roof-integrated PV system that is applied as building elements on an experimental house, and the energy saving effect of the BIPV system for a typical house. For the performance evaluation of the BIPV system, it produced a regression equation with measured data for winter days. The regression equation showed that a comparison of the measured electricity generation and the predicted electricity generation of the BIPV system were meaningful. It showed that an annual electricity generation of the system appeared to cover around 52% of an annual electricity consumption of a typical domestic house with the floor area of $96m^2$.