• Title/Summary/Keyword: 지붕마감재

Search Result 6, Processing Time 0.025 seconds

Townscape Color Character by Form Finishes of the Traditional Area - Focusing on Stockholm, Sweden - (전통지역의 형태 마감재별 경관 색채 특성 - 스웨덴 스톡홀름시의 실례를 대상으로 -)

  • Choe, Seung-Heuy
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • This article attempts to propose the control planning of townscape color around the historic and cultural heritages. The streets and roads of historic conservation and the changing perspectives to which it gives rise in Stockholm has changed dramatically during this century. New development or changes to existing buildings should be carried out in a way which acknowledges its surroundings and is a good neighbour, both in the cultural and social sense that makes good color design sense. There are many examples of townscape color, but the conservative and the historical streets and roads in the whole of the Stockholm city should benefit from careful design of the environment. To achieve this purposes, some strategies of case study of several streets and roads are reviewed; designing color context to relate to urban architectural design proposals of specific sites of cultural heritages are explored. In all new developments the scale of new buildings and the material finishes and colors used should respect the character of their surroundings and have due regard to the setting of any listed building. Streetscape color of visual assessment proposals should aim to help assimilate the development into the local scene. Important streets and roads should also include color townscape.

The Economic Feasibility of Building-Integrated Photovoltaics System Installed on the Roof of Residential Building - Focused on Comparison with Construction Cost of BAPV System Depend on Roof Finishing Materials

  • Oh, Byung-Chil
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: This study was on the economic feasibility of BIPV system, focused on comparison with construction cost of BAPV system depend on roof finishing materials, and to suggest basic data on the construction cost. Method: Construction cost of BAPV system was calculated, by selecting asphalt single, flat type roof tile, color steel plate, titanium zinc plate as roof finishing material of residential building and by sum up each cost for roof finishing construction and cost for 3kWp-volumed PV module installation. Also, the economic feasibility was analysed quantitatively by comparing the cost for BIPV system construction, installing same volumed PV module instead of roof finishing materials. Result: 1. By installing BIPV system instead of the roof finishing material, the cost of construction falls ; about 19% in case of the titanium zinc plate, which is the most expensive, and about 11% in case of the color steel plate. 2. Reducing amount of the construction cost gets larger because of installing BIPV module instead of the roof finishing material, as the construction cost for roof finishing material gets higher ; therefore, it is more economical than BAPV system in terms of whole cost of construction.

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

A Study on Buckling Characteristics of 2-way Grid Single-Layer Domes Considering Rigidity-Effect of Roofing Covering Materials (지붕마감재 강성효과를 고려한 2방향 그리드 단층돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.85-92
    • /
    • 2002
  • Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.

  • PDF

Questions and Solutions on Repair of Lime-Soil Consolidation in Traditional Buildings (전통 건축물 석회다짐층 보수 시공시의 문제점 및 개선 방안)

  • Kim, Jin-Man;Kwak, Eun-Gu;Suh, Man-Cheol;Cho, Heon-Young
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2002.02a
    • /
    • pp.21-31
    • /
    • 2002
  • Lime-soil consolidations are very important as structural material, bonding material, waterproofing material, and finishing material in korea traditional buildings. In this study, we investigated site application trouble in korea traditional buildings being repaired or restored, and propose following solutions. 1) To diminish quality variation occurred by slaking quick-lime in site, it is desirable to use slaked-lime for lime-soil consolidation. 2) For uniform construction of lime-soil consolidation, we would recommend builders to use mixer to be uniform mixture, premixed type materials and compacting machine in field, 3) and to use rigid suitable temporary construction as scaffold for preventing traditional buildings from additional damage occurred in demolition and construction of a layer of lime-soil consolidation of a roofing. 4) For suitable repair of traditional buildings, it is necessary to specify definitely materials and construction methods suggested by the standard specifications for repair of the cultural property.

  • PDF

Performance Evaluation of Softwood Plywood as Structural and Concrete-Form Panels (침엽수 합판의 구조용 및 콘크리트 거푸집용으로서의 성능 평가)

  • Lee, Jun-Jae;Kim, Gwang-Chul;Lee, Guk-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.14-24
    • /
    • 2000
  • In present research, the plywoods made of radiata pine or Japanese larch, the potential softwood species in mass supply, were discussed to examine their feasibility as the structural and concrete form panels through the basic properties test. First, plywood qualities and its nail performance were tested. The performance test for concrete form or structural panel by concentrated and uniformly distributed load were conducted to investigate the possibility as structural material for light frame and concrete constructions. Test results of basic quality such as specific gravity, cupping, bowing, and twisting appeared to satisfy the criteria for structural use. Also, nail performance test results, for roof and wall sheathing panels, nail lateral resistance, nail withdrawal resistance, and nail push head resistance proved to meet the required standard for structural use. The test results on performance as structural panel by concentrated and uniformly distributed load and as concrete form panel showed that these two species could be used for structural sheathing, subfloor, and concrete form panels.

  • PDF