• Title/Summary/Keyword: 지반 분류

Search Result 452, Processing Time 0.02 seconds

Utilizing Mean Teacher Semi-Supervised Learning for Robust Pothole Image Classification

  • Inki Kim;Beomjun Kim;Jeonghwan Gwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.17-28
    • /
    • 2023
  • Potholes that occur on paved roads can have fatal consequences for vehicles traveling at high speeds and may even lead to fatalities. While manual detection of potholes using human labor is commonly used to prevent pothole-related accidents, it is economically and temporally inefficient due to the exposure of workers on the road and the difficulty in predicting potholes in certain categories. Therefore, completely preventing potholes is nearly impossible, and even preventing their formation is limited due to the influence of ground conditions closely related to road environments. Additionally, labeling work guided by experts is required for dataset construction. Thus, in this paper, we utilized the Mean Teacher technique, one of the semi-supervised learning-based knowledge distillation methods, to achieve robust performance in pothole image classification even with limited labeled data. We demonstrated this using performance metrics and GradCAM, showing that when using semi-supervised learning, 15 pre-trained CNN models achieved an average accuracy of 90.41%, with a minimum of 2% and a maximum of 9% performance difference compared to supervised learning.

A study on the weighting of influence factors for tunnel collapse risk analysis (터널 붕괴 위험도 분석을 위한 영향인자 가중치 산정에 관한 연구)

  • Jeong-Heum Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.315-326
    • /
    • 2024
  • In this study, the Delphi method and AHP (analytic hierarchy process) were used to evaluate tunnel collapse risk from a comprehensive and multifaceted perspective. Influence factors were established through literature reviews, previous studies, and brainstorming sessions with expert groups, resulting in the construction of five main classification systems. A panel of 21 experts was formed, and three rounds of Delphi surveys were conducted to prevent errors and biases in the expert judgment process, thereby enhancing reliability. Ultimately, 14 influence factors were identified through CVR (content validity ratio) and COV (coefficient of variation) analyses of the experts' responses. Subsequently, the AHP method was applied to assess the relative importance of each influence factor and calculate the final composite weights. The timing of support and reinforcement had the highest priority, followed by groundwater inflow, joint conditions, support pattern levels, and auxiliary methods. These findings help identify the key factors affecting tunnel collapse risk and provide a foundation for developing strategies to improve tunnel safety.

Studies on the Construction Method of Chwibyeong and Investigating Original Form of the Chwibyeong at the Juhapru in the Changdeok Palace (취병(翠屛)의 조성방법과 창덕궁 주합루(宙合樓) 취병의 원형규명)

  • Jung, Woo-Jin;Sim, Woo-Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.2
    • /
    • pp.86-113
    • /
    • 2014
  • This study has researched the characteristics and elements of Chwibyeong (翠屛), a sort of trellis in the Joseon Dynasty through the old documents, and the original form of Chwibyeong at Juhapru (宙合樓) in Changdeuk Palace. The results were as follow. First, as the result of literatures analysis for Imwon-gyeongje-ji (林園經濟志) and Jeungbo-sallim-gyeongje (增補山林經濟), the plant screen was classified as kinds of support[frame] material, plants and methods of planting. It was found that the supports of Chwibyeong were made of bamboo or the material such as the Jinjangmok (眞長木: a stick of oak) and Giryu (杞柳: Salix purpurea var. japonica). The evergreen coniferous trees including Pinus densiflora, Taxus cuspidata and Thuja orientalis were mainly used for the plant material of Chwibyeong. The general planting method of Chwibyeong was to plant on the ground, but sometimes the container planting was also found on the artificial ground. Second, the term of 'Chwibyeong' in the literatures was used in only the screen made by evergreen trees, and the superordinate category term of it was indicated by 'byeong (屛)'. Therefore Chwibyeong was a compound word formed from 'chwi (翠)' which means the characteristics of evergreen and 'byeong' as tree screen which the support was made by bamboo. And Chwibyeong had semantic context which was combined with the literary symbolization to describe a landscape of green peak and Taoist ideology be inherent from 'twelve peaks of Musan[巫山十二峰]' in Sichuan sheng (四川省). Thirdly, the photograph of Chwibyeong at Juhapru taken by the 1880s, showed that Chwibyeong was made with coniferous trees and was almost 2 meters high. The Chwibyeong at Juhapru was removed during the Japanese colonial era, but a few yew trees(Taxus cuspidata) used for Chwibyeong are still remaining. And some Juniperus chinensis which the composition time is unclear, were cultivated while hung loose its branchs at the sides of Eosumun (魚水門). This Junipers were presumed to be planted by Japanese after Japanese annexation of Korea(1910), and it was judged that both of the roofs of Eosumun's side gates might have been transformed into Japanese style at the same time. Lastly, Chwibyeong at Juhapru was restored in 2008 but it was restored in wrong way from original form without precise research. Especially Chwibyeong was restored with Sasa boreralis which is damaged by frost, so it requires exertion that should revive the originals to plant original material as much as possible. And it needs the development of fabrication technique for Chwibyeong and the application to current landscape architecture.

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water (산 오염수 전처리용 침전 및 중화 특성)

  • Im, Jongdo;Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

Soil Characteristics according to the Geological Condition of Soil Slopes in Landslide Area (산사태지역 토층사면의 지질조건별 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.359-371
    • /
    • 2006
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas composed with gneiss, granite, and the tertiary sedimentary rock. To investigate the soil characteristics according to landslide and non landslide areas, soils are sampled from Jangheung, Sangju and Pohang. The landslides at three areas are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. On the basis of the landslide data and the result of soil test, the soil characteristics at the landslide area and the differentiation between landslide area and non landslide area are analyzed. However soil characteristics have a little differentiation to geological condition, the uniformity coefficient and the coefficient of gradation of soils at the landslide area is larger than those of soils at the non landslide area. Also, the proportion of fine particle of soils at the landslide area is higher. The plastic limit of soils sampled from the granite and the sedimentary rock regions is larger than that sampled from the gneiss region. However the liquid limit is irrelevant to the geological condition. Also, the consistency of soils at the landslide area is smaller. The natural moisture content of soils in the sedimentary rock regions is larger than that of the granite and gneiss. It is mainly influenced by mineral composition, soil layer structure, weathering condition, and so on. The soils sampled from landslide area have higher porosity and lower density than those from non landslide area. It means that the soils of landslide area have poor particle size distribution and loose density. Therefore, the terrain slope with poor distribution and loose density is vulnerable to occur in landslides. Also, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. Meanwhile, the shear strength of soils is little difference according to the geological condition. But, the internal friction angle of soils sampled from the landslide area is lower than that of soils from the non landslide area. Therefore, the terrain slope with low internal friction angle is more vulnerable to the landslide.

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

Discussions on the Distribution and Genesis of Mountain Ranges in the Korean Peninsular (III): Proposing a New Mountain Range Map (한국 산맥론(III): 새로운 산맥도의 제안)

  • Park, Soo-Jin;Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.276-295
    • /
    • 2008
  • Recent disputes on mountain ranges in Korea have partially been derived from the discordance of the spatial distribution and the extent of mountain ranges presented by different researchers and school textbooks. The lack of consensus on the definition and genesis of mountain ranges adds further confusion. In order to overcome these problems, it is necessary to provide genetically classified mountain range maps for different usages, map scales and educational purposes. This paper first argues that mountain ranges and mountain ridges should separately be used as different conceptual frameworks to explain complex spatial distribution of mountains in Korea. The new mountain range map (sanmaekdo) proposed in this research puts strong emphasis on tectonic movement and denudational processes to explain the spatial distribution of mountains. The new mountain range map has 15 mountain ranges (sanmaek: in total, which are further divided into 7 primary and 8 secondary mountain ranges. The new mountain range map eliminates Jeogyuryeongsanmaek, Myohyangsanmaek, Myeoraksanmaek, and Masingnyeongsanmaek from the existing map, since these have a vague definition and obscure spatial distribution. On the contrary, few new primary mountain ranges (Gilju-Myeongcheonsanmaek, Yangsansanmaek, Jirisanmaek) and secondary mountain ranges (Wolchulsanmaek and Buksubaeksanmaek) are added to the new mountain range map. Other mountain ranges also show a large difference both in their spatial distribution and the extent of mountain ranges, compared with the previous map. This is especially the case for Nangnimsanmaek, Hamgyeongsanmaek, Taebaeksanmaek, and Sobaeksanmaek. A few new names are also assigned to Macheollyeongsanmaek (Baekdusanmaek), Gwangjusanmaek (Hwaaksanmaek), Charyeongsanmaek (Chiaksanmaek), and Horyeongsanmaek (Naejangsanmaek), even though they show similar spatial distribution patterns with the ones in the existing map.

Mix Design and Characteristics of Compressive Strengths for Foam Concrete Associated with the Application of Bottom Ash (Bottom Ash를 사용한 기포콘크리트의 배합 설계 및 압축강도 특성)

  • Kim, Sang-Chel;Ahn, Sang-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.283-290
    • /
    • 2009
  • Differently from fly ash, the bottom ash produced from thermoelectric power plant has been treated as an industrial waste matter, and almost reclaimed a tract from the sea. If this waste material is applicable to foam concrete as an aggregate owing to its light-weight, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and horizontal forces and deformations of retaining wall subject to soil pressure. This study has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was measured in terms of unit weight of concrete, air content, water-cement ratio and compressive strength. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationships between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a mix design proportion of foam concrete while bottom ash is used as an aggregate of the concrete.

Correlation Analysis between Weight Ratio and Shear Strength of Fault Materials using Multiple Regression Analysis (다중회귀분석을 이용한 단층물질의 무게비와 전단강도의 상관성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Soek;Kim, Woo-Seok;Na, Jong-Hwa;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.397-409
    • /
    • 2014
  • The appearance of faults during tunnel construction is often difficult to predict in terms of strike, dip, scale, and strength, even though this information is essential in determining the strength of the surrounding rock mass. However, the strength and rock mass classification of fault zones are generally determined empirically on the construction site. In this study, 109 specimens were collected from fault of nine area throughout Korea, and direct shear tests were conducted and the particle distribution was analyzed to better characterize the fault zones. Six multiple regression models were established, using 97 of the specimens, to analyze the correlation between the shear strengths and weight rations of these fault materials. A verification of the six models, using the remaining 12 specimens, shows that in all of the models the coefficient of determination yielded $R^2{\geq}0.60$, with two models yielding $R^2{\geq}0.69$. These results provide useful information for determining the shear strength of fault materials in future studies.

Analysis of the Effect of Pavement Crack Depth of the Cavity Management Grade (포장 균열 깊이가 공동 관리 등급에 미치는 영향 분석)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.449-457
    • /
    • 2020
  • Purpose: The Seoul Metropolitan Government classifies the cavity risks into emergency, priority, general, and observation grades in consideration of the cavity size, asphalt pavement thickness, and pavement depth based on the cavity management grade criteria of Seoul. In this study, the depth of cracking was measured at 17 cracks identified by checking the pavement condition of the cavity at 265 cavities found in the 2019 cavity investigation service. Method: In the first phase, crack width and depth were measured using a vernier caliper, taper gauge, and depth gauge to check the cracks of the identified cavities. In the second phase, the location of the largest crack in the upper road surface was confirmed, and A.C. was drilled to further measure the crack depth. Results: As a result, the cavity management level was raised in nine of the 17 test cavity identified. Therefore, in case of emergency and priority recovery, the grade should be adjusted according to the depth of pavement crack and the thickness of residual A.C. pavement. Conclusion: In the case of cracks in the upper part of the cavity, the crack progression must be determined through the perforation and the remaining asphalt concrete thickness must be determined to determine the cavity grade.