• Title/Summary/Keyword: 지반 분류

Search Result 452, Processing Time 0.021 seconds

Evaluation of Organic Compounds and Heavy Metals in Sediments from the Urban Streams in the Busan City (부산시 도심하천 퇴적물의 유기물 및 중금속 오염도 평가)

  • Lee, Junki;Kim, Seogku;Song, Jaehong;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • The main purpose of this study is to offer informations about the current conditions and basic data of sediments for the urban streams in the Busan city. Total 14 urban streams were selected and sediment samples were collected. Then, It was investigated the sediment qualities though the measurement of pH, proximate analysis, elemental analysis, COD, organic carbon content, volatile solid content and heavy metal concentration. Results show that COD, organic carbon content, volatile solid content and heavy metal concentration of sediment are determined in the range of $1.20{\sim}75.07mg\;L^{-1}$, 0.19~11.54%, 0.23~34.21% and $0.4{\sim}732.6mg\;kg^{-1}$, respectively. Finally, Analysis data of sediments were compared with USEPA sediment quality standards and ontario sediment quality guidelines. As a result, when compared with USEPA sediment quality standards, total 9 samples were evaluated as heavily polluted and total 3 samples were evaluated as moderately polluted. But, when compared with ontario sediment quality guidelines, total 3 samples were evaluated as Severe effect level and total 10 samples were evaluated as lowest effect level.

Analysis of Consolidation and Shear Characteristics for the Kwangyang Bay Clay (실내시험을 통한 광양만 점토의 압밀 및 전단특성분석)

  • 이영휘;김용준;김대길
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.151-160
    • /
    • 1999
  • A series of laboratory tests for the marine clay sampled under the sea of Kwangyang bay have been conducted. The main types of tests are the general index property tests, the oedometer tests and the triaxial compression tests in both undrained(CIU) and drained(CID) conditions. The clayey samples, classified as CL, CH with natural water content of 38.3~84.6% and liquidity index of 0.71~0.98, are in the normally consolidated state with O.C.R. of 1.0l~l.60. The undrained stress path from CIU tests can be normalized with isotropic consolidation pressure$(p_0)$ and equal shear strain contour is linear passing through the origin in the (q, p) plot. The undrained shear strain is found to be the only function of the stress ratio($\eta$) and linear with intercept in the ($\varepsilon/\eta,\eta$) plot. The built-up pore pressure normalized with pc is also linear with respect to $\eta$. and its slope is defined by ´C´ as a pore pressure parameter. Equations to predict the undrained stress path and the shear strain are proposed. It is proved that the proposed equations give better agreements to the measured values than the Cam-clay theories. The failure points of the stress path are located on the same C.S.L. in (q, p) plot during both CIU and CID tests, which justifies the concept of critical state theory.

  • PDF

Development of Landslide-Risk Prediction Model thorough Database Construction (데이터베이스 구축을 통한 산사태 위험도 예측식 개발)

  • Lee, Seung-Woo;Kim, Gi-Hong;Yune, Chan-Young;Ryu, Han-Joong;Hong, Seong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2012
  • Recently, landslide disasters caused by severe rain storms and typhoons have been frequently reported. Due to the geomorphologic characteristics of Korea, considerable portion of urban area and infrastructures such as road and railway have been constructed near mountains. These infrastructures may encounter the risk of landslide and debris flow. It is important to evaluate the highly risky locations of landslide and to prepare measures for the protection of landslide in the process of construction planning. In this study, a landslide-risk prediction equation is proposed based on the statistical analysis of 423 landslide data set obtained from field surveys, disaster reports on national road, and digital maps of landslide area. Each dataset includes geomorphologic characteristics, soil properties, rainfall information, forest properties and hazard history. The comparison between the result of proposed equation and actual occurrence of landslide shows 92 percent in the accuracy of classification. Since the input for the equation can be provided within short period and low cost, and the results of equation can be easily incorporated with hazard map, the proposed equation can be effectively utilized in the analysis of landslide-risk for large mountainous area.

Soil Water Content Measurement Technology Using Hyperspectral Visible and Near-Infrared Imaging Technique (초분광 근적외선 영상 기술을 이용한 흙의 함수비 측정 기술)

  • Lim, Hwan-Hui;Cheon, Enok;Lee, Deuk-Hwan;Jeon, Jun-Seo;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.51-62
    • /
    • 2019
  • In this study, a simple method to estimate the soil water content variation in a wide area was proposed using hyperspectral near-infrared images. The reflectance data of a sand, granite soils, and a kaolinite were measured by reflecting the soil samples with different wavelengths in the visible and near-infrared (VNIR) regions using hyperspectral cameras. The measured reflectances and parameters were used to build a water content prediction model using the Partial Least Square Regression (PLSR) analysis. In the water content prediction model, the Area of Reflectance (Near-infrared, NIR) parameter was the most suitable parameter to determine the water content. The parameter was applicable regardless of the soil type, as the coefficient of determination (R2) exceeded 0.9 for each soil sample. Additionally, the mean absolute percentage error (MAPE) was less than 15% when compared with the actual water content of the soil. Therefore, the predictability of water content variation for soils with water content lower than 50% was confirmed. Accordingly through this study, the predictability of water content variation in several soil types using the hyperspectral near-infrared images was confirmed. For further development, a model that incorporates soil classification would be required to improve the accuracy of the model and to predict higher range of water contents.

A Study on the Flowable Backfill with Waste Foundry Sand for Retaining Wall (유동특성을 이용한 폐주물사 혼합물의 옹벽뒷채움재 연구)

  • 조재윤;이관호;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.17-30
    • /
    • 2000
  • The objective of this study is to evaluate the lateral earth pressure and the stability of small scale retaining wall with waste foundry sand(WFS) mixtures as a controlled low strength materials (CLSM). Three different types of WFS, like Green WFS, Hurane WFS and Coated WFS, were used in this study, and fly ash of Class F type was adopted. To evaluate the lateral earth pressure and the stability of retaining wall, two different samll scale retaining wall tests, which are called an artificially controlled strain method and a natural strain method, were carried out. In case of an artificially controlled strain method, the coefficient of lateral earth pressure, just after backfilling of WF mixtures, was around 0.8 to 1.0, and most of earth pressure was dissipated within 12 hours. In case of a natural strain method, two steps of stage constructions were employed. The mixtures of Hurane WFS and Coated WFS showed fast decrease of earth pressure due to a relatively good drainage. Judging from the sta bility of retaining wall for overturning and sliding, two steps of stage construction for 2 days were enough to finish the backfill of 6-m height of retaining wall. Also, considering the curling effect of WFS mixtures, the stability of retaining wall increased as curling time increased.

  • PDF

Analysis & Design Electronic Commerce System Interface for The Blind (시각장애 사용자를 위한 전자상거래 인터페이스 분석 및 설계)

  • 박성제;강영무
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2001.12a
    • /
    • pp.413-426
    • /
    • 2001
  • 본 연구는 첫째, 정보통신기술의 발달이 시각장애인 복지 증진에 미칠 수 있는 가능성에 대한 이론적인 부분을 고찰하였다. 둘째, 우리나라 시각장애인 정보화의 문제점과 해결책을 도출하였고 셋째, 시각장애 사용자를 위한 전자상거래 인터페이스 디자인의 분석 및 설계를 통해 전자상거래에서 시각장애 사용자들이 큰 제약없이 사용할 수 있는 방안을 제시하고자 한다. 현재 시각장애인들의 웹 사용을 보면 시각장애 전용 S/W의 보조 하에 사용을 하고 있다. 그러한 보조 도구의 실정에 맞도록 텍스트 버전 및 Non-Frame버전, Alt-Text 옵션, 캡션 등을 넣어 접근성을 확보하고 인터넷을 큰 제약을 받지않고 이용할 수 있도록 웹 페이지의 설계가 필요한 실정이다. 이를 위하여 먼저 시각장애에 대한 개념과 원인 및 종류 그리고 특성을 통해 시각장애인에 대한 이론적 배경을 파악하였다. 그리고 시각장애인의 정보화 환경과 이용 현황과 시각장애인의 정보 접근을 제도적, 기기 및 소프트웨어 개발 측면에서 분석을 하였고, 장애인을 위한 정보통신기술 중 대표적인 사례를 검토해 보았다. 다음으로 국내외의 대표적인 전자상거래 사이트에서의 인터페이스를 화면구성(Layout), 텍스트(Text), 그래픽(Graphic), 멀티미디어(MultiMedia) 측면에서 분석을 하였다. 분석한 내용을 바탕으로 시각장애 사용자의 입력(User Input) 부분을 고려한 인터페이스 방향을 제시하고 프로토타입을 개발하여 시험 대상 사이트와의 만족도를 시각장애 사용자를 통해 비교 ·분석하였다. 결론부분에서는 정보불평등을 해소하고, 정보통신기술이 장애인의 복지향상에 기여하도록 하기 위해 전자상거래 싸이트에서의 시각 장애인들을 위한 방향을 제시하고자 한다.박의 표현, 등록 및 색인방법 (c) 공급 선박의 분류와 표현 방법 (d) 에이전트의 정보 수집을 위한 메시지 표현 방법 (e) 수집된 선박정보의 데이터베이스 저장 표현방법 (f) 요구 선박을 찾아주는 정보제공 서비스가 요구된다.동을 보여 조사대상 5호분, 6호분, 7호분, 중 가장 심한 거동을 보이고 있다. 이는 고분 벽돌의 깨짐이 6호분이 가장 심하다는 사실과 무관하지 않은 것으로 판단된다. 봉분내부의 토양층구조에 대한 지오레이다 영상단면을 분석한 결과 무령왕릉 연도상부의 누수지방지층이 심하게 균열되어 있음을 발견하였다. 이 곳은 고분내부로 직접누수가 발생하는 곳이다. 직접누수와 지하수 형태로 유입된 침투수는 고분군 주위의 지반의 함수비를 증가시켜 지반의 지지력을 약화시키고 또한 고분내로 서서히 유입되어 고분내부의 습도를 100%로 유지시키는 주된 원인이다. 이러한 높은 습도는 고분내의 남조류의 번식을 가져왔으며 남조류의 번식은 현재 6호분이 가장 심각하고 7호분이 우려되는 수준이며 5호분은 문제가 없는 것으로 판단된다. 이와 같이 고분군의 발굴후 인위적인 환경변화와 지속적인 강우침투 및 배수 불량의 영향은 고분군의 안정성에 상당한 위험을 초래하였으며, 현 상태는 각 고분에 대한 보강이 불가피한 것으로 판단된다. 고분 벽돌의 깨짐, 고분 벽체의 거동, 조류의 서식등을 포함하여 송산리 고분군에서 발생되고 있는 보존상의 제반 문제점들을 일차적으로 누수 및 침투수에 의한 결과이다. 그러므로 무엇보다도 고분군 내부 및 고분 주변으로의 강우 및 지하수 침투를 막는 차수 대책이 시급한 것으로 판단된다. 또한 이미 발생한 변위가 더 이상 진행되지 않도록 하중을 경감하고 토압의 균형을 이루는 보강대책이 시급한 실정이다. 고분군

  • PDF

A Study on Correlation between Soil Properties and Parameters of Soft Clay in Honam Coastal Region (호남해안지역 연약점토의 토질특성과 제 토질정수와의 상관성에 관한 연구)

  • Kim Jong-Ryeol;Choo Youn-Woo;Kang Hee-Bog;Kim Gyo-Jun;Lee Sang-Hun
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.371-379
    • /
    • 2004
  • Soil investigation data at 7 different locations around Honam costal region were analyzed and experimental correlations between soil properties and parameters of soft clay were presented. Most soils were classified as CL and CH by the Unified Soil Classification System and were unstable structurally because the water contents were generally greater than the liquid limits. The compression index has good correlations with water content, liquid limit and initial void ratio. The trend of these correlations were similar to the Skempton equation Cc = 0.009(LL -10) and other studies for Korean soft clays but the constants were small different. The slope of these correlations for Honam costal region were slightly greater than those for Kyunggi costal region and Kyungnam costal region. The correlation coefficient (R) between the liquid limit and the plastic index is 0.93. It is seen that not only the water content and the liquid limit but also the water content and the initial void ratio are correlate, therefore the experimental equations were presented for the practical purpose.

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.

Liquefaction Resistance of Pohang Sand (포항모래의 액상화 저항 특성에 관한 연구)

  • Park, Sung-Sik;Nong, Zhenzhen;Choi, Sun-Gyu;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.5-17
    • /
    • 2018
  • A magnitude 5.4 earthquake struck the city of Pohang, North Gyeongsang Province, South Korea on November 15, 2017. Many sand volcanoes were observed on paddy fields, parks and roads. This phenomenon was the first to be observed as a sign of soil liquefaction in South Korea. In this study, two different kinds of ejected Pohang sands were collected from a liquefied paddy field. Those sands were reconstituted into loose and dense conditions and then a series of cyclic simple shear tests were conducted under confining stresses of 100 and 200 kPa. A real earthquake motion was also repetitively applied to the specimen. As a result of constant shear stress tests, the cyclic resistance ratio (CRR) of loose sand was 0.12-0.14, while the CRR value of dense sand was 0.17-0.21. It was shown that the relative density was more influencing factor on liquefaction resistance than the sand types and initial confining stress. When a real Pohang earthquake motion was repetitively applied to the specimen, a loose sand was liquefied at the second earthquake motion but the dense sand at the third earthquake motion.

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.