• Title/Summary/Keyword: 지능형 조명시스템

Search Result 120, Processing Time 0.021 seconds

Definition and Analysis of Shadow Features for Shadow Detection in Single Natural Image (단일 자연 영상에서 그림자 검출을 위한 그림자 특징 요소들의 정의와 분석)

  • Park, Ki Hong;Lee, Yang Sun
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.165-171
    • /
    • 2018
  • Shadow is a physical phenomenon observed in natural scenes and has a negative effect on various image processing systems such as intelligent video surveillance, traffic surveillance and aerial imagery analysis. Therefore, shadow detection should be considered as a preprocessing process in all areas of computer vision. In this paper, we define and analyze various feature elements for shadow detection in a single natural image that does not require a reference image. The shadow elements describe the intensity, chromaticity, illuminant-invariant, color invariance, and entropy image, which indicate the uncertainty of the information. The results show that the chromaticity and illuminant-invariant images are effective for shadow detection. In the future, we will define a fusion map of various shadow feature elements, and continue to study shadow detection that can adapt to various lighting levels, and shadow removal using chromaticity and illuminance invariant images.

Hand Interface using Intelligent Recognition for Control of Mouse Pointer (마우스 포인터 제어를 위해 지능형 인식을 이용한 핸드 인터페이스)

  • Park, Il-Cheol;Kim, Kyung-Hun;Kwon, Goo-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1060-1065
    • /
    • 2011
  • In this paper, the proposed method is recognized the hands using color information with input image of the camera. It controls the mouse pointer using recognized hands. In addition, specific commands with the mouse pointer is designed to perform. Most users felt uncomfortable since existing interaction multimedia systems depend on a particular external input devices such as pens and mouse However, the proposed method is to compensate for these shortcomings by hand without the external input devices. In experimental methods, hand areas and backgrounds are separated using color information obtaining image from camera. And coordinates of the mouse pointer is determined using coordinates of the center of a separate hand. The mouse pointer is located in pre-filled area using these coordinates, and the robot will move and execute with the command. In experimental results, the recognition of the proposed method is more accurate but is still sensitive to the change of color of light.

Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA (역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석)

  • Moon, Hae-Min;Park, Jin-Won;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • To satisfy the needs of high-level intelligent surveillance system, it shall be able to extract objects and classify to identify precise information on the object. The representative method to identify one's identity is face recognition that is caused a change in the recognition rate according to environmental factors such as illumination, background and angle of camera. In this paper, we analyze the robust face recognition of face image by changing the distance through a variety of experiments. The experiment was conducted by real face images of 1m to 5m. The method of face recognition based on Linear Discriminant Analysis show the best performance in average 75.4% when a large number of face images per one person is used for training. However, face recognition based on Convolution Neural Network show the best performance in average 69.8% when the number of face images per one person is less than five. In addition, rate of low resolution face recognition decrease rapidly when the size of the face image is smaller than $15{\times}15$.

Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation (딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • License plate recognition plays a key role in intelligent transportation systems. Therefore, it is a very important process to efficiently detect the number and character areas. In this paper, we propose a method to effectively detect license plate number area by applying deep learning and semantic image segmentation algorithm. The proposed method is an algorithm that detects number and text areas directly from the license plate without preprocessing such as pixel projection. The license plate image was acquired from a fixed camera installed on the road, and was used in various real situations taking into account both weather and lighting changes. The input images was normalized to reduce the color change, and the deep learning neural networks used in the experiment were Vgg16, Vgg19, ResNet18, and ResNet50. To examine the performance of the proposed method, we experimented with 500 license plate images. 300 sheets were used for learning and 200 sheets were used for testing. As a result of computer simulation, it was the best when using ResNet50, and 95.77% accuracy was obtained.

Implementation of Efficient Container Number Recognition System at Automatic Transfer Crane in Container Terminal Yard (항만 야드 자동화크레인(ATC)에서 효율적인 컨테이너번호 인식시스템 개발)

  • Hong, Dong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.57-65
    • /
    • 2010
  • This paper describes the method of efficient container number recognition in colored container image with number plate at ATC(Automatic Transfer Crane) in container terminal yard. At the Sinseondae terminal gate in Busan, the container number recognition system is installed by "intelligent port-logistics system technology development", that is government research and development project. It is the method that it sets up the tunnel structure inside camera on the gate and it recognizes the container number in order to recognize the export container cargo automatically. However, as the automation equipment is introduced to the container terminal and the unmanned of a task is gradually accomplished, the container number recognition system for the confirmation of the object of work is required at ATC in container terminal yard. Therefore, the container number recognition system fitted for it is necessary for ATC in container terminal yard in which there are many intrusive of the character recognition through image including a sunlight, rain, snow, shadow, and etc. unlike the gate. In this paper, hardware components of the camera, illumination, and sensor lamp were altered and software elements of an algorithm were changed. that is, the difference of the brightness of the surrounding environment, and etc. were regulated for recognize a container number. Through this, a shadow problem, and etc. that it is thickly below hung with the sunlight or the cargo equipment were solved and the recognition time was shortened and the recognition rate was raised.

A Study on Face Awareness with Free size using Multi-layer Neural Network (다층신경망을 이용한 임의의 크기를 가진 얼굴인식에 관한 연구)

  • Song, Hong-Bok;Seol, Ji-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.149-162
    • /
    • 2005
  • This paper suggest a way to detect a specific wanted figure in public places such as subway stations and banks by comparing color face images extracted from the real time CCTV with the face images of designated specific figures. Assuming that the characteristic of the surveillance camera allows the face information in screens to change arbitrarily and to contain information on numerous faces, the accurate detection of the face area was focused. To solve this problem, the normalization work using subsampling with $20{\times}20$ pixels on arbitrary face images, which is based on the Perceptron Neural Network model suggested by R. Rosenblatt, created the effect of recogning the whole face. The optimal linear filter and the histogram shaper technique were employed to minimize the outside interference such as lightings and light. The addition operation of the egg-shaped masks was added to the pre-treatment process to minimize unnecessary work. The images finished with the pre-treatment process were divided into three reception fields and the information on the specific location of eyes, nose, and mouths was determined through the neural network. Furthermore, the precision of results was improved by constructing the three single-set network system with different initial values in a row.

A Robust License Plate Extraction Method for Low Quality Images (저화질 영상에서 강건한 번호판 추출 방법)

  • Lee, Yong-Woo;Kim, Hyun-Soo;Kang, Woo-Yun;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper proposes a robust license plate extraction method from images taken under unconstrained environments. Utilization of the color and the edge information in complementary fashion makes the proposed method deal with not only various lighting conditions, hilt blocking artifacts frequently observed in compressed images. Computational complexity is significantly reduced by applying Hough transform to estimate the skew angle, and subsequent do-skewing procedure only to the candidate regions. The true plate region is determined from the candidates under examination using clues including the aspect ratio, the number of zero crossings from vertical scan lines, and the number of connected components. The performance of the proposed method is evaluated using compressed images collected under various realistic circumstances. The experimental results show 94.9% of correct license plate extraction rate.

Analysis of Technology and Research Trends in Biomedical Devices for Measuring EEG during Driving (운전 중 EEG 측정을 위한 생체의료기기의 기술 및 연구동향 분석)

  • Gyunhen Lee;Young-Jin Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1179-1187
    • /
    • 2023
  • Recent advancements in modern transportation have led to the active development of various biomedical signal and medical imaging technologies. Particularly, in the field of cognitive/neuroscience, the importance of electroencephalography (EEG) measurement and the development of accurate EEG measurement technology in moving vehicles represent a challenging area. This study aims to extensively investigate and analyze the trends in technology research utilizing EEG during driving. For this purpose, the Scopus database was used to explore EEG-related research conducted since the year 2000, resulting in the selection of about 40 papers. This paper sheds light on the current trends and future directions in signal processing technology, EEG measurement device development, and in-vehicle driver state monitoring technology. Additionally, a ultra compact 32-channel EEG measurement module was designed. By implementing it simply and measuring and analyzing EEG signals, in-vehicle EEG module's functionality was checked. This research anticipates that the technology for measuring and analyzing biometric signals during driving will contribute to driver care and health monitoring in the era of autonomous vehicles.

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.