Abstract
This paper suggest a way to detect a specific wanted figure in public places such as subway stations and banks by comparing color face images extracted from the real time CCTV with the face images of designated specific figures. Assuming that the characteristic of the surveillance camera allows the face information in screens to change arbitrarily and to contain information on numerous faces, the accurate detection of the face area was focused. To solve this problem, the normalization work using subsampling with $20{\times}20$ pixels on arbitrary face images, which is based on the Perceptron Neural Network model suggested by R. Rosenblatt, created the effect of recogning the whole face. The optimal linear filter and the histogram shaper technique were employed to minimize the outside interference such as lightings and light. The addition operation of the egg-shaped masks was added to the pre-treatment process to minimize unnecessary work. The images finished with the pre-treatment process were divided into three reception fields and the information on the specific location of eyes, nose, and mouths was determined through the neural network. Furthermore, the precision of results was improved by constructing the three single-set network system with different initial values in a row.
본 논문에서는 실시간 폐쇄회로 화면으로 받은 컬러 이미지에서 얼굴영상을 추출하고 이미 지정된 특정인의 얼굴영상과 비교를 통해 지하철이나 은행 등 공공장소에서의 수배자 등 어떤 특정인을 검출하는 방법을 제안하고자 한다. 감시카메라의 특성상 화면속의 얼굴정보가 임의의 크기로 가변하고 영상 내에서 다수의 얼굴정보를 포함하고 있음을 가정할 때, 얼굴영역을 얼마나 정확하게 검색 할 수 있느냐에 초점을 맞추었다. 이를 해결하기 위하여F.Rosenblatt가 제안한 퍼셉트론 신경망 모델을 기초로 임의의 얼굴영상에 대한 $20{\times}20$ 픽셀로 서브샘플링을 사용한 규준화 작업을 통해서 전면얼굴에서와 같은 인식기법의 효과를 사용하고, 획득한 얼굴후보 영역에 대하여 조명이나 빛에 의한 외부환경의 간섭을 최소화하기 위하여 최적선형필터와 히스토그램 평활화 기법을 이용하였다. 그리고 불필요한 학습을 최소화하기 위하여 달걀형 마스크의 덧셈연산을 전 처리 과정에 추가하였다. 전 처리 과정을 마친 이미지는 각각 세 개의 수용필드로 쪼개어져 특정 위치에 존재하는 눈, 코, 입 능의 정보를 신경망 학습을 통해 최종 결정된다. 또한 각각 다른 초기값을 가지는 3개의 단일셋 네트워크시스템을 병력형태로 구성하여 결과의 정확도를 높여 구현하였다.