• 제목/요약/키워드: 지능정보 기반

검색결과 4,526건 처리시간 0.035초

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.

SAR를 이용한 토양수분 및 수문인자 산출 연구동향 (Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar)

  • 정지훈;이용관;김성준
    • 한국지리정보학회지
    • /
    • 제23권3호
    • /
    • pp.26-67
    • /
    • 2020
  • 영상레이더(Synthetic Aperture Radar, SAR)는 기상조건이나 주야, 일조에 상관없이 지표면을 촬영할 수 있고, 토양수분이나 지하수 등 수문인자의 탐색이 가능하여 수자원 분야에서 그 중요성이 점차 두드러지고 있다. SAR는 1970년대부터 인공위성에 탑재되기 시작하여 2020년 현재 15기 이상의 SAR 위성이 운용되고 있고 향후 5년 내에도 10기 내외의 위성이 발사될 예정이다. 최근에는 관측 폭 및 해상도 증진, 다중 편파 및 다중주파수, 관측 각도의 다양화 등 다양한 형태의 SAR 기술들이 개발 및 활용 중이다. 이에 본 고에서는 SAR 시스템의 간략한 역사와 더불어 토양수분 및 수문인자 산출과 관련된 연구동향을 조사하였다. 현재까지 SAR 위성을 활용하여 산출 가능한 수문인자는 토양수분, 해저지하수유출, 강수, 적설분포면적, 식생지수 등이 있으며, 그 중 토양수분은 물리적 모델인 IEM(Integral Equation Model)과 인공지능 기반의 ANN(Artificial Neural Network)을 대표적으로 활용하여 우리나라를 포함한 북미, 유럽, 인도 등 총 17개국에서 연구가 진행되고 있다. 위성 탑재체는 RADARSAT-1, ENVISAT ASAR, 그리고 ERS-1/2가 가장 많이 사용되었으나 현재는 운영이 종료되었으며, 현재 운영 중인 RADARSAT-2, Sentinel-1, SMAP 등의 활용도 점차 늘어나고 있는 것으로 나타났다. 우리나라는 2025년 발사를 목표로 C-band SAR를 탑재한 수자원·수재해 중형위성을 개발 중이므로, SAR를 이용한 다양한 수문인자 산출 연구가 활성화될 것으로 예상된다.

보편적 빅데이터와 빅데이터 교육의 방향성 연구 - 빅데이터 전문가의 인식 조사를 기반으로 (Study on the Direction of Universal Big Data and Big Data Education-Based on the Survey of Big Data Experts)

  • 박윤수;이수진
    • 정보교육학회논문지
    • /
    • 제24권2호
    • /
    • pp.201-214
    • /
    • 2020
  • 최근 데이터 관련 법안이 개정되면서 빅데이터의 활용 분야는 점차 확장되고 있으며, 빅데이터 교육에 대한 관심이 증가하고 있다. 그러나 빅데이터를 활용하기 위해서는 높은 수준의 지식과 스킬이 필요하고, 이를 모두 교육하기에는 오랜 시간과 많은 비용이 소요된다. 이에 본 연구를 통해 산업 현장에서 사용되는 광범위한 영역의 빅데이터를 보편적 빅데이터(Universal Big Data)로 정의하고, 대학교 수준에서 보편적 빅데이터를 교육하기 위해서 중점적으로 교육해야 할 지식 영역을 산출하고자 한다. 이를 위해 빅데이터 관련 산업에 종사하는 전문인력을 구분하기 위한 기준을 마련하고, 설문 조사를 통해 빅데이터에 대한 인식을 조사했다. 조사 결과에 의하면 전문가들은 컴퓨터과학에서 의미하는 빅데이터보다 광범위한 범위의 데이터를 빅데이터로 인식하고 있었으며, 빅데이터의 가공 과정에 반드시 빅데이터 처리 프레임워크 또는 고성능 컴퓨터가 필요한 것은 아니라고 인식하고 있었다. 이는 빅데이터를 교육하기 위해서는 컴퓨터과학(공학)적 지식과 스킬보다는 빅데이터의 분석 방법과 응용 방법을 중심으로 교육해야 한다는 것을 의미한다. 분석 결과를 바탕으로 본 논문에서는 보편적 빅데이터 교육을 위한 새로운 패러다임을 제안하고자 한다.

온톨로지 기반 법령 검색시스템의 개발: 철도·교통 분야 연구개발사업을 중심으로 (A Development of Ontology-Based Law Retrieval System: Focused on Railroad R&D Projects)

  • 원민재;김동희;정해민;이상근;홍준석;김우주
    • 한국전자거래학회지
    • /
    • 제20권4호
    • /
    • pp.209-225
    • /
    • 2015
  • 철도교통 분야의 연구개발사업은 여러 법령과 긴밀하게 관련되어 있기 때문에, 연구개발을 성공적으로 수행했더라도 법령에 의해 제약되어 연구개발 결과의 실질적인 사업화 또는 실용화를 이루어내지 못하는 사례가 발생하고 있다. 본 논문에서는 이러한 사례를 방지하기 위한 방편으로 철도교통 분야에서 진행되는 연구개발사업과 관련된 법령을 검색할 수 있는 법령검색시스템의 모델을 제시하였다. 사업 내용을 설명하는 연구개발계획서가 시스템에 입력되면 요약서의 내용을 대상으로 형태소 분석을 수행하여 명사들만을 남긴다. 국가법령정보센터에서 제공하는 법령정보공동활용서비스를 사용하여 명사들 중 법령용어를 분류하고, 법령용어와 해당 법령용어를 정의하는 법령과의 관계를 지능형 지식 베이스인 온톨로지에 저장한다. 온톨로지에 저장된 법령들은 본 연구에서 개발한 추가적인 지표 계산과정을 거쳐 연구개발사업과 관련된 정도를 기준으로 순위가 매겨진 후, 시스템 사용자에게 제공된다. 사용자는 연구개발에 영향을 미칠 수 있는 법령을 검색할 수 있게 되어 사업 시작 전에 연구 방향을 결정하는 데 참고하거나, 사업 진행하는 과정에서도 참고자료로 사용할 수 있다. 궁극적으로, 법령에 의해 철도교통 분야 연구개발사업이 실패하거나 실용화되지 못하는 경우를 사전에 방지함으로써, 사업에 투자한 예산에 의해 기대되는 충분한 기술적 경제적 효과를 얻을 수 있게 될 것이다.

철도 궤도의 이상상황 예방을 위한 영상처리와 딥러닝을 융합한 지능형 철도 레일 탐지 알고리즘 (Intelligent Railway Detection Algorithm Fusing Image Processing and Deep Learning for the Prevent of Unusual Events)

  • 정주호;김다현;김철수;오염덕;안준호
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.109-116
    • /
    • 2020
  • 고속철도의 출현과 함께 철도는 국내외에서 자주 사용하는 교통수단 중 하나이다. 또한, 환경적인 측면에서도 다른 교통수단에 비해 이산화탄소 배출량도 적은 편이며 에너지 효율성은 높다. 철도에 관한 관심이 높아질 수록 철도의 안전과 관련된 문제는 중요한 관심사 중 하나이다. 그 중 시각적 이상현상은 철도 앞에 동물이나 사람 등 다양한 장애물이 갑자기 나타나 사고가 발생한다. 이러한 사고들을 예방하기 위해 철도 레일을 탐지하는 것은 기본적으로 탐지해야하는 영역 중 하나이다. 철도에 설치된 카메라를 통해 영상을 수집할 수 있으며 철도 레일 탐지 방법은 전통적인 방식과 딥러닝 알고리즘을 이용한 방식이 있다. 전통적인 방식은 레일 주변의 다양한 노이즈로 인해 정확한 탐지가 어려우며 딥러닝 알고리즘을 이용하면 정확도 높게 탐지할 수 있으며 두 알고리즘을 융합하여 정확한 철도 레일을 탐지한다. 제안하는 알고리즘은 수집한 데이터를 기반으로 철도 레일 탐지에 대한 정확도를 판단한다.

스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석 (A Benchmark of AI Application based on Open Source for Data Mining Environmental Variables in Smart Farm)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.159-159
    • /
    • 2017
  • 스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열 데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인 Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow 는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월 까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

  • PDF

스마트 홈 환경에서 디바이스 상호 인증 및 키 관리 기법 (Device Mutual Authentication and Key Management Techniques in a Smart Home Environment)

  • 민소연;이재승
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.661-667
    • /
    • 2018
  • 최근 무선 통신 기술과 센서 디바이스들의 발달로 스마트 홈 시장이 성장하고 있으며, 다양한 디바이스가 활용되고 있다. 이러한 사물인터넷 환경은 지능형 서비스를 위해 다양하고 방대한 양의 디바이스 정보를 수집하여 사용자 정보를 기반으로 서비스를 제공받으며, 다양한 디바이스를 제어해야 하고, 이기종 간의 통신을 제공해야 한다. 하지만, 이러한 성장과 함께, 스마트 홈 환경에서는 다양한 보안 위협이 발생하고 있다. 실제, 프루프 포인트와 HP에서는 스마트 홈 환경에서의 피해 사례 및 보안 취약점의 심각성에대해 경고하였으며, 다양한 환경에서의 침해 사례가 발표되었다. 그러므로, 본 논문에서는 스마트 홈 환경에서 발생할 수 있는 보안 문제를 해결하기 위해 스마트 홈에서 사용하는 스마트 노드들 간의 안전한 상호인증 기법에 대해 연구를 수행하였다. 제안하는 논문의 경우 보안성 평가를 통해 스니핑, 스푸핑, 디바이스 상호 인증, 중간자 공격, 무결성 등 사물인터넷 환경과 센서 디바이스에서 발생할 수 있는 잘 알려진 취약점에 대해 난수와 수시로 갱신되는 세션키 및 비밀키를 이용하여 안전함을 검증하였다. 또한, 기존에 연구된 사물인터넷 보안 프로토콜과의 비교를 통해 보안성 및 키 관리 측면에서 우수함을 확인할 수 있었다.

딥러닝과 통계 모델을 이용한 T-커머스 매출 예측 (T-Commerce Sale Prediction Using Deep Learning and Statistical Model)

  • 김인중;나기현;양소희;장재민;김윤종;신원영;김덕중
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.803-812
    • /
    • 2017
  • T-커머스는 양방향 디지털 TV를 기반으로 양방향 데이터방송 기술을 활용하여 상거래를 하는 기술융합형 서비스이다. 채널 번호와 판매상품이 제한된 환경에서 T-커머스의 매출을 극대화 하기 위해서는 각 제품의 시간대별 경쟁력을 고려하여 매출이 최대화 되도록 프로그램을 편성해야 한다. 이를 위해, 본 논문에서는 딥러닝을 이용해 T-커머스에서 각 상품을 각 시간대에 편성하였을 때의 매출을 예측하는 방법을 제안한다. 제안하는 방법은 심층신경망을 이용해 판매 상품과 시간대, 주차, 휴일 여부, 그리고 날씨를 입력 받아 실제 방송으로 편성했을 때 기대되는 매출을 예측한다. 그리고, 통계적 모델과 SVD(Singular Value Decomposition)를 적용하여 판매 데이터의 편중 및 희박성 문제를 완화한다. 실제 T-커머스 운영자인 (주)더블유쇼핑의 판매 기록 데이터에 대하여 실험하였을 때 실제 매출과 예측치의 차이가 0.12의 NMAE(Normalized Mean Absolute Error)를 보여 제안하는 알고리즘이 효과적으로 동작함을 확인하였다. 제안된 시스템은 (주)더블유쇼핑의 T-커머스 시스템 적용되어 방송 편성에 활용되었다.

지하시설물 통합관리를 위한 모니터링 항목 분류에 관한 연구 (Research on Classification of Monitoring Items for the Integrated Management of the Underground Facilities)

  • 김정훈;민경주;이미숙;임시영
    • Spatial Information Research
    • /
    • 제18권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 지하시설물은 도시민의 편의 및 안전과 직결되어 있으므로 효율적인 관리가 필요하다. 그러나 관리주체가 상이함으로 인해 정보의 공동 활용도가 낮으며 업무 생산성이 높지 않은 것이 현실이다. 이에 정부에서는 도로기반 지하시설물에 대한 전산화 사업 등의 노력을 통해 이를 해결하고자 하고 있다. 특히 센서 및 무선통신 등의 유비쿼터스 기술을 활용한 지하시설물의 통합관리는 지하시설물 관리의 지향점으로 제시하고 있다. 센서 및 무선통신 등을 활용한 지하시설물 통합관리는 유비쿼터스 도시의 핵심인 도시통합운영센터의 주요 역할이 될 것이다 그러나 유비쿼터스 도시를 표방하며 건설이 진행 중인 도시에서 조차도 아직까지 도시통합운영센터의 역할에 대한 정의와 그 범위에 대한 합의가 이루어지지 않고 있다. 지하시설물에 대한 관리는 기존 지자체 및 유관기관에 해당 역할이 부여되어 있기 때문에 도시통합센터에서의 관재에 대한 근거가 미약하다. 더불어 유비쿼터스도시 서비스의 실현을 위해서는 관련된 기술에 대한 효율적인 개발이 필요하다. 유비쿼터스도시 서비스는 그 종류가 많고 융 복합적이기 때문에 관련 기술의 개발시 우선순위를 고려하거나 공동으로 개발해야 효율적이다. 이에 본 연구에서는 기존에 시설물별로 이루어졌던 지능형 모니터링 항목에 대한 수요조사를 바탕으로 지하시설물 통합관리를 위한 모니터링 항목의 분류안을 제시함으로써 도시통합운영센터의 역할에 대한 조명과 효율적 기술 개발을 위한 근거를 제공하고자 한다.

Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템 (An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION)

  • 김종호;김상균;황구선;안상호;강병두
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.87-98
    • /
    • 2011
  • 동영상에서의 움직이는 객체 검출과 추적은 객체 식별, 상황인식, 지능형 영상 감시 시스템 등 많은 시각 기반 응용 시스템에서 기본적이고 필수적인 전처리 작업이다. 본 논문에서는 배경과 조명이 실시간으로 변화하는 상황에서 움직이는 객체를 빠르고 정확하게 추출하고 움직이는 객체가 다른 물체에 가려지는 경우에도 강인하게 객체를 추적하는 방법을 제안한다. 객체의 효과적인 검출을 위해서 효과적인 고유 공간과 Fuzzy C-means(FCM) 를 결합하여 사용하고 검출된 객체를 강인하게 추적하기 위해 Conditional Density Propagation (CONDENSATION) 알고리즘을 사용한다. 먼저 Principal Component Analysis(PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분(Principal component)으로 선형변환 한다. 주성분들의 고유 특성에 대한 해석을 통하여 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 고유 배경을 구성한다. 다음으로 이전단계에서 구성된 고유 벡터와 입력 영상을 결합한 연산 결과를 FCM의 입력 값으로 사용해서 객체를 검출한다. 최종적으로 검출된 객체의 좌표를 CONDENSATION의 입력으로 사용해서 객체를 추적한다. 고정된 카메라에서 조명변화와 배경변화에 적용 가능한 시스템을 구현하기 위해 고정된 카메라에서 움직이는 다양한 객체가 포함된 영상을 수집하여 학습데이터로 구성하여 사용하였다. 실험 결과에 따르면 제안하는 방법이 조명변화와 배경변화 그리고 객체의 부분적 움직임에 모두 강인하게 객체를 검출하고 다른 물체나 배경에 의해 객체가 일부 가려지더라도 객체를 추적함을 보여준다.