DOI QR코드

DOI QR Code

Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar

SAR를 이용한 토양수분 및 수문인자 산출 연구동향

  • CHUNG, Jee-Hun (Dept. of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • LEE, Yong-Gwan (Dept. of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • KIM, Seong-Joon (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 정지훈 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 이용관 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2020.06.12
  • Accepted : 2020.07.28
  • Published : 2020.09.30

Abstract

Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.

영상레이더(Synthetic Aperture Radar, SAR)는 기상조건이나 주야, 일조에 상관없이 지표면을 촬영할 수 있고, 토양수분이나 지하수 등 수문인자의 탐색이 가능하여 수자원 분야에서 그 중요성이 점차 두드러지고 있다. SAR는 1970년대부터 인공위성에 탑재되기 시작하여 2020년 현재 15기 이상의 SAR 위성이 운용되고 있고 향후 5년 내에도 10기 내외의 위성이 발사될 예정이다. 최근에는 관측 폭 및 해상도 증진, 다중 편파 및 다중주파수, 관측 각도의 다양화 등 다양한 형태의 SAR 기술들이 개발 및 활용 중이다. 이에 본 고에서는 SAR 시스템의 간략한 역사와 더불어 토양수분 및 수문인자 산출과 관련된 연구동향을 조사하였다. 현재까지 SAR 위성을 활용하여 산출 가능한 수문인자는 토양수분, 해저지하수유출, 강수, 적설분포면적, 식생지수 등이 있으며, 그 중 토양수분은 물리적 모델인 IEM(Integral Equation Model)과 인공지능 기반의 ANN(Artificial Neural Network)을 대표적으로 활용하여 우리나라를 포함한 북미, 유럽, 인도 등 총 17개국에서 연구가 진행되고 있다. 위성 탑재체는 RADARSAT-1, ENVISAT ASAR, 그리고 ERS-1/2가 가장 많이 사용되었으나 현재는 운영이 종료되었으며, 현재 운영 중인 RADARSAT-2, Sentinel-1, SMAP 등의 활용도 점차 늘어나고 있는 것으로 나타났다. 우리나라는 2025년 발사를 목표로 C-band SAR를 탑재한 수자원·수재해 중형위성을 개발 중이므로, SAR를 이용한 다양한 수문인자 산출 연구가 활성화될 것으로 예상된다.

Keywords

References

  1. Ahn, S.R., G.A. Park, C.H. Jang and S.J. Kim. 2013. Assessment of climate change impact on evapotranspiration and soil moisture in a mixed forest catchment using spatially calibrated SWAT model. Journal of Korea Water Resources Association 46(6):569-583. https://doi.org/10.3741/JKWRA.2013.46.6.569
  2. Alexakis, D.D., F.K. Mexis, A.K. Vozinaki, I.N. Daliakopoulos and I.K. Tsanis. 2017. Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A Hydrological Approach. Sensors 17(6):1455. https://doi.org/10.3390/s17061455
  3. Alpers, W. and Melsheimer, C. 2004. Rainfall, Synthetic Aperture Radar marine users manual, U.S. Department of Commerce, NOAA, Washington DC, U.S. pp.353-372.
  4. Alpers, W., B. Zhang, A. Mouche, K. Zeng and P.W. Chan. 2016. Rain footprints on C-band synthetic aperture radar images of the ocean - Revisited. Remote Sensing of Environment 187(15):169-185. https://doi.org/10.1016/j.rse.2016.10.015
  5. Altese, E., O. Bolognani, M. Mancini and P.A. Troch. 1996. Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: sensitivity analysis based on a theoretical surface scattering model and field data. Water Resources Research 32(3):653-661. https://doi.org/10.1029/95WR03638
  6. Alvarez-Mozos, J., J. Casali, M. Gonzalez-Audicana and N.E.C. Verhoest. 2006. Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation. IEEE Transactions on Geoscience and Remote Sensing 44(4):913-924. https://doi.org/10.1109/TGRS.2005.862248
  7. Alvarez-Mozos, J., M. Gonzalez-Audicana and J. Casali. 2007. Evaluation of empirical and semi-empirical backscattering models for surface soil moisture estimation. Canadian Journal of Remote Sensing 33(3):176-188. https://doi.org/10.5589/m07-024
  8. Ambach, W.D. 1980. The dielectric behavior of snow: A study versus liquid water content. NASA workshop on microwave remote sensing of snowpack properties, A. In Rango (Ed.), NASA Conference Publication, 2153, pp.59-62.
  9. Anguela, T.P., M. Zribi, N. Baghdadi and C. Loumagne. 2010. Analysis of local variation of soil surface parameters with TerraSAR-X radar data over bare agricultural fields. IEEE Transactions of Geoscience and Remote Sensing 48(2):874-881. https://doi.org/10.1109/TGRS.2009.2028019
  10. Atlas, D. and R.K. Moore. 1987. The measurement of precipitation with synthetic aperture radar. Journal of Atmospheric and Ocean Technology 4:368-376. https://doi.org/10.1175/1520-0426(1987)004<0368:TMOPWS>2.0.CO;2
  11. Attema, E.P.W. and F.T. Ulaby. 1978. Vegetation modeled as a watercloud. Radio Science 13:357-364. https://doi.org/10.1029/RS013i002p00357
  12. Baghadi, N., Y. Gauthier and M. Bernier. 1997. Capability of multitemporal ERS-1 SAR data for wet-snow mapping. Remote Sensing of Environment 60(2):174-186. https://doi.org/10.1016/S0034-4257(96)00180-0
  13. Baghdadi, N., J.A. Chaaya and M. Zribi. 2011a. Semiempirical calibration of the integral equation model for SAR data in C-band and cross polarization using radar images and field measurements. IEEE Transactions on Geoscience and Remote Sensing 8(1):14-18. https://doi.org/10.1109/LGRS.2010.2050054
  14. Baghdadi, N., M. El Hajj, M. Zribi and S. Bousbih. 2017. Calibration of the water cloud model at C-band for winter crop fields and grasslands. Remote Sensing 9(9):969. https://doi.org/10.3390/rs9090969
  15. Baghdadi, N., J.P. Fortin and M. Bernier. 1999. Accuracy of wet snow mapping using simulated Radarsat backscattering coefficients from observed snow cover characteristics. International Journal of Remote Sensing 20(10):2049-2068. https://doi.org/10.1080/014311699212344
  16. Baghdadi, N., S. Gaultier and C. King. 2002a. Retrieving surface roughness and soil moisture from Synthetic Aperture Radar(SAR) data using neural networks. Canadian Journal of Remote Sensing 28(5):701-711. https://doi.org/10.5589/m02-066
  17. Baghdadi, N., I. Gherboudj, M. Zribi, M. Sahebi, C. King and F. Bonn. 2004. Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements. International Journal of Remote Sensing 25(18):3593-3623. https://doi.org/10.1080/01431160310001654392
  18. Baghdadi, N., N. Holah and M. Zribi. 2006a. Soil moisture estimation using multi-incidence and multi-polarization ASAR data. International Journal of Remote Sensing 27(10):1907-1920. https://doi.org/10.1080/01431160500239032
  19. Baghdadi, N., N. Holah and M. Zribi. 2006b. Calibration of the integral equation model for SAR data in C-band and HH and VV polarizations. International Journal of Remote Sensing 27(4):805-816. https://doi.org/10.1080/01431160500212278
  20. Baghdadi, N., C. King and L. Bonnifait. 2002b. An empirical calibration of the integral equation model based on SAR data and soil parameters measurements. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing, Toronto, Ontrio, Canada. June 24-28, 2002. pp.2646-2650.
  21. Baghdadi, N., C. King, A. Bourguignon and A. Remond. 2002c. Potential of ERS and RADARSAT data for surface roughness monitoring over bare agricultural fields: application to catchments in Northern France. International Journal of Remote Sensing 23(17):3427-3442. https://doi.org/10.1080/01431160110110974
  22. Baghdadi, N., E. Saba, M. Aubert, M. Zribi and F. Baup. 2011. Evaluation of radar backscattering models IEM, Oh, and Dubois for SAR data in X-band over bare soils. IEEE Transactions on Geoscience and Remote Sensing 8(6): 1160-1164. https://doi.org/10.1109/LGRS.2011.2158982
  23. Baghdadi, N. and M. Zribi. 2006. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. International Journal of Remote Sensing 27(18):3831-3852. https://doi.org/10.1080/01431160600658123
  24. Baghdadi, N., M. Zribi, S. Paloscia, N.E.C. Verhoest, H. Lievens, F. Baup and F. Mattia. 2015. Semi-empirical calibration of the integral equation model for copolarized L-band backscattering. Remote Sensing 7(10):13626-13640. https://doi.org/10.3390/rs71013626
  25. Bai, X., B. He, X. Li, J. Zeng, X. Wang, Z. Wang, Y. Zeng and Z. Su. 2017. First assessment of Sentinel-1A data for surface soil moisture estimations using a coupled water cloud model and advanced integral equation model over the Tibetan plateau. Remote Sensing 9(7):714. https://doi.org/10.3390/rs9070714
  26. Balenzano, A., F. Mattia, G. Satalino, V. Pauwels and P. Snoeij. 2012. SMOSAR algorithm for soil moisture retrieval using Sentinel-1 data. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, July 22-27, 2012. pp.1200-1203.
  27. Bartsch, A., J. Jansa, M. Schoner and W. Wagner. 2007. Monitoring of spring snowmelt with Envisat ASAR WS in the Eastern Alps by combination of ascending and descending orbits. Proceedings of Envisat Symposium, Montreux, Switzerland, April 23-27, 2007. pp.1-6.
  28. Baup, F., E. Mougin, P. de Rosnay, F. Timouk and I. Chenerie. 2007. Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sensing Environment 109(4):473-481. https://doi.org/10.1016/j.rse.2007.01.015
  29. Bauer-Marschallinger, B., C. Paulik, S. Hochstoger, T. Mistelbauer, S. Modanesi, L. Ciabatta, C. Massari, L. Brocca and W. Wagner. 2018. Soil moisture from fusion of scatterometer and SAR: Closing the scale gap with temporal filtering. Remote Sensing 10(7):1030. https://doi.org/10.3390/rs10071030
  30. Beauregard, V., K. Goita and R. Magagi. 2016. Empirical model for surface soil moisture estimation over wheat fields using C-band polarimetric SAR. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, July 10-15, 2016. pp.1695-1698.
  31. Beriaux, E., C. Lucau-Danila, E. Auquiere and P. Defourny. 2013. Multiyear independent validation of the water cloud model for retrieving maize leaf area index from SAR time series. nInternational Journal of Remote Sensing 34(12):4156-4181. https://doi.org/10.1080/01431161.2013.772676
  32. Beriaux, E., F. Waldner, F. Collienne, P. Bogaert and P. Defourny. 2015. Maize leaf area index retrieval from synthetic quad pol SAR time series using the water cloud model. Remote Sensing 7(12):16204-16225. https://doi.org/10.3390/rs71215818
  33. Bindlish, R. and A.P. Barros, 2001. Parameterization of vegetation backscatter in radar based, soil moisture estimation. Remote Sensing of Environment 76(1):130-137. https://doi.org/10.1016/S0034-4257(00)00200-5
  34. Boisvert, J.B., Q.H.J. Gwyn, A. Chanzy, D.J. Major, B. Brisco and R.J. Brown. 1997. Effect of surface soil moisture gradients on modeling radar backscattering from bare fields. International Journal of Remote Sensing 18(1):153-170. https://doi.org/10.1080/014311697219330
  35. Bolten, J.D., W.T. Crow, X. Zhan, T.J. Jackson and C.A. Reynolds. 2009. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3(1):57-66. https://doi.org/10.1109/JSTARS.2009.2037163
  36. Bourgeau-Chavez, L.L., E.S. Kasischke, K. Riordan, S. Brunzell, M. Nolan, E. Hyer, J. Slawski, M. Medvecz, T. Walters and S. Ames. 2007. Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery. International Journal of Remote Sensing 28(10):2133-2162. https://doi.org/10.1080/01431160600976061
  37. Bronstert, A. and A. Bardossy. 1999. The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale. Hydrology and Earth System Sciences 3(4):505-516. https://doi.org/10.5194/hess-3-505-1999
  38. Burnett, W., H. Bokuniewicz, M. Huettel, W. Moore and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66: 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  39. Champion, I. and G. Gyot. 1992. Generalised formulation for semi-empirical radar models representing crop backscattering. Proceedings of the 5th International Colloquium, Courchevel, France, January 14-18, 1991. pp.269-272.
  40. Chauhan, S., H.S. Srivastava and P. Patel. 2018. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data. Remote Sensing of Environment 216:28-43. https://doi.org/10.1016/j.rse.2018.06.014
  41. Chen, J., H. Lin and Z. Pei. 2007. Application of ENVISAT ASAR data in mapping rice crop growth in southern China. IEEE Geoscience and Remote Sensing Letters 4(3):431-435. https://doi.org/10.1109/LGRS.2007.896996
  42. Chen, K.S., T.D. Wu, L. Tsang, Q. Li, J.C. Shi and A.K. Fung. 2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method Simulations. IEEE Transactions on Geoscience and Remote Sensing 41(1):90-101. https://doi.org/10.1109/TGRS.2002.807587
  43. Chen, K.S., T.D. Wu, M.K. Tsay and A.K. Fung. 2000. A note on the multiple scattering in an IEM model. IEEE Transactions on Geoscience and Remote Sensing 38(1):249-256. https://doi.org/10.1109/36.823917
  44. Choker, M., N. Baghdadi, M. Zribi, M.E. Hajj, S. Paloscia, N.E.C. Verhoest, H. Lievens and F. Mattia. 2017. Evaluation of the Oh, Dubois and IEM backscatter models using a large dataset of SAR data and experimental soil measurements. Water 9(1):38. https://doi.org/10.3390/w9010038
  45. Crooks, W.T.S. and R.A. Cheke. 2014. Soil moisture assessments for brown locust Locustana pardalina breeding potential using synthetic aperture radar. Journal of Applied Remote Sensing 8(1):084898. https://doi.org/10.1117/1.JRS.8.084898
  46. Dabrowska-Zielinska, K., M. Budzynska, W. Kowalik and K. Turlej. 2010. Soil moisture and evapotranspiration of wetlands vegetation habitats retrieved from satellite images. Hydrology and Earth System Science 7(1):5929-5955. https://doi.org/10.5194/hessd-7-5929-2010
  47. Dabrowska-Zielinska, K., Y. Inoue, W. Kowalik and M. Gruszczynska. 2007. Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis. Advances in Space Research 39(1):139-148. https://doi.org/10.1016/j.asr.2006.02.032
  48. Dabrowska-Zielinska, K., J. Musial, A. Malinska, M. Budzynska, R. Gurdak, W. Kiryla, M. Bartold and P. Grzybowski. 2018. Soil Moisture in the Biebrza wetlands retrieved from Sentinel-1 imagery. Remote Sensing 10(12):1979. https://doi.org/10.3390/rs10121979
  49. Dahnju, M.S. 1983. Studies of Himalayan snow cover area from satellites. Hydrological Applications of Remote Sensing and Remote Data Transmission, Proceedings of the Hamburg Symposium, Hamburg, Germany. 145:401-409.
  50. De Roo, R.D., Y. Du, F.T. Ulaby and M.C. Dobson. 2001. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Transaction on Geoscience and Remote Sensing 39(4):864-872. https://doi.org/10.1109/36.917912
  51. Dozier, J. 1998. Remote sensing of the Alpine snow cover: A review of techniques and accomplishments from the visible wavelengths through the microwave. International Conference on Snow Hydrology, the Integration of Physical, Chemical, and Biological Systems, 6.9 October 1998, Brownsville, Vermont, USA. U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755-1290, Special Report 98-10.
  52. Dozier, J. and D. Marks. 1987. Snow mapping and classification from Landsat thematic mapper data. Annals of Glaciology 9:97-103. https://doi.org/10.3189/S026030550000046X
  53. Dozier, J. and H.T. Painter. 2004. Multispectral and hyperspectral remote sensing of alpine snow properties. Annual Reviews of Earth and Planetary Science 32:465-494. https://doi.org/10.1146/annurev.earth.32.101802.120404
  54. Du, J., J. Shi and R. Sun. 2010. The development of HJ SAR soil moisture retrieval algorithm. International Journal of Remote Sensing 31(14):3691-3705. https://doi.org/10.1080/01431161.2010.483486
  55. Dubois, P.C., J. van Zyl and T. Engman, 1995a. Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing 33(4):915-926. https://doi.org/10.1109/36.406677
  56. Dubois, P.C., J. van Zyl and T. Engman. 1995b. Corrections to "Measuring soil moisture with imaging radars". IEEE Transactions on Geoscience and Remote Sensing 33(6):1340. https://doi.org/10.1109/TGRS.1995.477194
  57. Durden, S.L., Z.S. Haddad, A. Kitiyakara and F.K. Li. 1998. Effects of nonuniform beam filling on rainfall retrieval for the TRMM precipitation radar. Journal of Ocean and Atmospheric Technology 15:635-646. https://doi.org/10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2
  58. Esch, S., W. Korres, T.G. Reichenau and K. Schneider. 2018. Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Journal of Applied Remote Sensing 12(2):022206.
  59. Filgueiras, R., E.C. Mantovani, D. Althoff, E.I.F. Filho and F.F. da Cunha. 2019. Crop NDVI monitoring based on Sentinel-1. Remote Sensing 11(12):1441. https://doi.org/10.3390/rs11121441
  60. Fontanelli, G., S. Paloscia, M. Zribi and A. Chahbi. 2013. Sensitivity analysis of Xband SAR to wheat and barley leaf area index in the Merguellil basin. Remote Sensing Letters 4(11):1107-1116. https://doi.org/10.1080/2150704X.2013.842285
  61. Frison, P.L., B. Fruneau, S. Kmiha, K. Soudani, E. Dufrene, T.L. Toan, T. Koleck, L. Villard, E. Mougin and J.P. Rudant. 2018. Potential of Sentinel-1 data for monitoring temperate mixed forest phenology. Remote Sensing 10(12):2049. https://doi.org/10.3390/rs10122049
  62. Fung, A.K. 1994. Microwave scattering and emission models and their applications. Artech House Inc., Norwood, MA. pp. 573.
  63. Fung, A.K. and K.S. Chen. 2004. An update on the IEM surface backscattering model. IEEE Geoscience and Remote Sensing Letters 1(2):75-77. https://doi.org/10.1109/LGRS.2004.826564
  64. Fung, A.K., Z.Q. Li and K.S. Chen. 1992. Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing 30(2):356-369. https://doi.org/10.1109/36.134085
  65. Gherboudj, I., R. Magagi, A.A. Berg and B. Toth. 2011. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sensing of Environment 115(1):33-43. https://doi.org/10.1016/j.rse.2010.07.011
  66. Goodison, B.E., S.E. Waterman and E.J. Langham. 1980. Application of synthetic aperture radar data to snow cover monitoring. In Sixth Canadian Symposium on Remote Sensing, at Halifax, Nova Scotia, pp.263-271.
  67. Gorrab, A., M. Zribi, N. Baghdadi, B. Mougenot, P. Fanise and Z.L. Chabaane. 2015. Retrieval of both Soil Moisture and texture using TerraSAR-X images. Remote Sensing 7(8):10098-10116. https://doi.org/10.3390/rs70810098
  68. Hall, D.K., G.A. Riggs, V.V. Salomonson, N.E. DiGirolamo and K.A. Bayr. 2002. MODIS snow-cover products. Remote Sensing of Environment 83:181-194. https://doi.org/10.1016/S0034-4257(02)00095-0
  69. Hallikainen, M.T. 1984. Retrieval of snow water equivalent from nimbus-7 SSMR data: effect of land cover categories and weather conditions. IEEE Journal of Oceanic Engineering 9(5):372-376. https://doi.org/10.1109/JOE.1984.1145656
  70. Hallikainen, M.T., J. Sokol, T.J. Pultz and A.E. Walker. 2003. Passive and active microwave remote sensing of snow cover. International Journal of Remote Sensing 24(24):5327-5344. https://doi.org/10.1080/0143116031000115076
  71. Hallikainen, M.T., F.T. Ulaby and M. Abdelrazik. 1986. Dielectric properties of snow in the 3 to 37GHz range. IEEE Transactions on Antennas and Propagation 34(11):1329-1339. https://doi.org/10.1109/TAP.1986.1143757
  72. Han, H.G. and M.J. Lee. 2019. A Study on the Environmental Application of Image Radar for Expanding the Use of Next Generation Medium Satellite 5. Korean Journal of Remote Sensing 35(6-3):1251-1260. https://doi.org/10.7780/kjrs.2019.35.6.3.8
  73. Harahsheh, H.A. 2016. Oil spill detection and monitoring of Abu Dhabi coastal zone using KOMPSAT-5 SAR imagery. Proceedings of XXIII International Society for Photogrammetry and Remote Sensing Congress, Prague, Czech Republic, July 12-19, 2016. pp.1115-1121.
  74. Harold, H., D. Small, S. Biegger, H. Hilko and N. Daniel. 2000. Small-Scale monitoring of wet snow cover with Radarsat-ScanSAR data. In proceedings of EARSELSIG Workshop of Land Ice and Snow, Dresden, Germany, June 16-17, 2000. pp.339-347.
  75. Hwang, E.H., H.S. Chae and W.S. Yu. 2018. Development plan of compact satellite for water resources and water -related disaster management. Journal of the Korean Association of Geographic Information Studies 21(4):218-237. https://doi.org/10.11108/KAGIS.2018.21.4.218
  76. Hwang, J.I., S.H. Chae, D. Kim and H.S. Jung, 2017. Application of Artificial Neural Networks to ship detection from Xband Kompsat-5 imagery. Applied Sciences 7(9):961. https://doi.org/10.3390/app7090961
  77. Hosseini M., H. McNairn, A. Merzouki and A. Pacheco. 2015. Estimation of Leaf Area Index(LAI) in corn and soybeans using multi-polarization C- and L-band radar data. Remote Sensing of Environment 170:77-89. https://doi.org/10.1016/j.rse.2015.09.002
  78. Hsieh, C.Y., A.K. Fung, G. Nesti, A.J. Sieber and P. Coppo. 1997. A further study of the IEM surface scattering model. IEEE Transactions on Geoscience and Remote Sensing 35(4):901-909. https://doi.org/10.1109/36.602532
  79. Inoue, Y., T. Kurosu, H. Maeno, S. Uratsuka, T. Kozu, K. Dabrowska-Zielinska and J. Qi. 2002. Season-long daily measurements of multifrequency(Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sensing of Environment 81:194-204. https://doi.org/10.1016/S0034-4257(01)00343-1
  80. Jameson, A.R., F.K. Li, S.L. Durden, Z.S. Haddad, B. Holt, T. Fogarty, E. Im and R.K. Moore. 1997. SIR-C/X-SAR observations of rain storms. Remote Sensing of Environment 59(2):267-279. https://doi.org/10.1016/S0034-4257(96)00159-9
  81. Jang, J.C., K.A. Park and D.C. Yang. 2018. Validation of sea surface wind estimated from KOMPSAT-5 backscattering coefficient data. Korean Journal of Remote Sensing 34(6-3):1383-1398. https://doi.org/10.7780/KJRS.2018.34.6.3.6
  82. Jang, M.W. 2011. Water resource monitoring using synthetic aperture radar. Magazine of the Korean Society of Agricultural Engineers 53(3):18-28.
  83. Jiao, X., J.M. Kovacs, J. Shang, H. Mcnairn, W. Dan, B. Ma and X. Geng. 2014. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS Journal of Photogrammetry and Remote Sensing 96:38-46. https://doi.org/10.1016/j.isprsjprs.2014.06.014
  84. Jiao, X., H. Mcnairn, J. Shang and J. Liu. 2010. The sensitivity of multifrequency (X, C and L-band) radar backscatter signatures to bio-physical variables(LAI) over corn and soybean fields. The ISPRS TC VII Symposium - 100 Years ISPRS, Vienna, Austria, 2010. pp.317-325.
  85. Joseph, A.T., R. van der Velde, P.E. O'Neill, R. Lang and T. Gish. 2010. Effects of corn on C-and L-band radar backscatter: a correction method for soil moisture retrieval. Remote Sensing of Environment 114(11):2417-2430. https://doi.org/10.1016/j.rse.2010.05.017
  86. Kasischke, E.S., L.L. Bourgeau-Chavez, and J.F. Johnstone. 2007. Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery - Implications for post-fire tree recruitment. Remote Sensing of Environment 108(1):42-58. https://doi.org/10.1016/j.rse.2006.10.020
  87. Kim, D.H., Y.K. Lee and S.W. Kim. 2020. Ship detection based on KOMPSAT-5 SLC image and AIS data. Korean Journal of Remote Sensing 36(2-2):365-377. https://doi.org/10.7780/kjrs.2020.36.2.2.11
  88. Kim, G.S. and J.P. Kim. 2011. Correlation analysis between soil moisture retrieved from satellite images and ground network measurements. Journal of the Korean Association of Geographic Information Studies 14(2):69-81. https://doi.org/10.11108/kagis.2011.14.2.069
  89. Kim, S.B., J.J. van Zyl, J.T. Johnson, M. Moghaddam, L. Tsang, A. Colliander, R.S. Dunbar, T.J. Jackson, S. Jaruwatanadilok, R. West, A. Berg. T. Caldwell, M.H. Cosh, D.C. Goodrich, S. Livingston, E. Lopez-Baeza, T. Rowlandson, M. Thibeault, J.P. Walker, D. Entekhabi, E.G. Njoku, P.E. O'Neill and S.H. Yueh. 2017. Surface soil moisture retrieval using the L-band Synthetic Aperture Radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites. IEEE Transactions on Geoscience and Remote Sensing 55(4):1897-1914. https://doi.org/10.1109/TGRS.2016.2631126
  90. Kim, S.W., D.H. Kim and Y.K. Lee, 2018. Operational ship monitoring based on integrated analysis of KOMPSAT-5 SAR and AIS data. Korean Journal of Remote Sensing 34(2):3327-3338. https://doi.org/10.7780/kjrs.2018.34.2.2.3
  91. Kim, Y. and J.J. van Zyl. 2009. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing 47(8):2519-2527. https://doi.org/10.1109/TGRS.2009.2014944
  92. Konelsen, K.C. and P. Coulibaly. 2013. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology 476(7):460-489. https://doi.org/10.1016/j.jhydrol.2012.10.044
  93. Koskinen, J.T., J.T. Pulliainen and M.T. Hallikainen. 1997. The use of ERS-1 SAR data in snow melt monitoring. IEEE Transactions on Geoscience and Remote Sensing 35(3):601-610. https://doi.org/10.1109/36.581975
  94. Koyama, C., W. Korres, P. Fiener and K. Schneider. 2010. Variability of surface soil moisture observed from multitemporal C-band synthetic aAperture radar and field data. Vadose Zone Journal 9(4):1014-1024. https://doi.org/10.2136/vzj2009.0165
  95. Kulkarni, A., B.P. Rathore, S.K. Singh and A. Ajai. 2010. Distribution of seasonal snow cover in central and western Himalaya. Annals of Glaciology 51(54):121-128.
  96. Kumerow, C., J. Simpson, O. Thiele, W. Barnes, A.T.C. Chang, E. Sotcker, R.F. Adler, A. Hou, R. Kakar, F. Wentz, P. Ashcroft, T. Kozu, Y. Hong, K. Okamoto, T. Iguchi, H. Kuroiwa, E. Im, Z. Haddad, G. Huffman, B. Ferrier, W.S. Olson, E. Zipser, E.A. Smith, T.T. Wilheit, G. North, T. Krishnamurti and K. Nakamura. 2000. The status of the Tropical Rainfall Measuring Mission(TRMM) after two years in orbit. Journal of Applied Meteorology and Climatology 39(12):1965-1982. https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
  97. Kurucu, Y., F.B. Sanli, M.T. Esetlili, M. Bolca and C. Goksel. 2009. Contribution of SAR images to determination of surface moisture on the Menemen Plain, Turkey. International Journal of Remote Sensing 30(7):1805-1817. https://doi.org/10.1080/01431160802639764
  98. Kussul, N., G. Lemoine, F.J. Gallego, S.V. Skakun, M. Lavreniuk and A.Y. Shelestov. 2017. Parcel-based crop classification in Ukraine using Landsat-8 data and sentinel-1A data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6):2500-2508. https://doi.org/10.1109/JSTARS.2016.2560141
  99. Kwak, Y.K. 2011. Satellite Synthetic Aperture Radar(SAR) technology trends. The Proceedings of the Korea Electromagnetic Engineering Society 22(6):4-16.
  100. Laconte, R., F. Brissette, M. Galarneau and J. Rousselle. 2004. Mapping near-surface soil moisture with RADARSAT-1 synthetic aperture radar data. Water Resources Research 40(1):W01515. https://doi.org/10.1029/2003WR002312
  101. Lakhankar, T., H. Ghedira and R. Khanbilvardi. 2006. Soil moisture retrieval from RADARSAT data: a Neuro-Fuzzy approach. Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, July 31-August 4, 2006. pp. 2328-2331.
  102. Lawrence, H., F. Demontoux, J. Wigneron, P. Paillou, T. Wu and Y.H. Kerr. 2011. Evaluation of a numerical modeling approach based on the finite-element method for calculating the rough surface scattering and emission of a soil layer. IEEE Geoscience and Remote Sensing Letters 8(5):953-957. https://doi.org/10.1109/LGRS.2011.2131633
  103. Le Hegarat-Mascle, S., M. Zribi, F. Alem, A. Weisse and C. Loumagne. 2002. Soil moisture estimation from ERS/SAR data: Toward an operational methodology. IEEE Transactions on Geoscience Remote Sensing 40(12):2647-2658. https://doi.org/10.1109/TGRS.2002.806994
  104. Lee, J.W., Y.G. Lee and S.J. Kim. 2017. The possibility of drought expression by late march dryness in rice paddy areas using Terra MODIS NDVI. Journal of the Korean Association of Geographic Information Studies 20(3):27-41. https://doi.org/10.11108/kagis.2017.20.3.027
  105. Lee S.J., S.W. Hong, J.I. Cho and Y.W. Lee. 2017. Experimental retrieval of soil moisture for cropland in South Korea using Sentinel-1 SAR data. Korean Journal of Remote Sensing 33(6-1):947-960. https://doi.org/10.7780/KJRS.2017.33.6.1.4
  106. Lee, Y.G., C.G. Jung and S.J. Kim. 2019. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agricultural Water Management 213(1):580-593. https://doi.org/10.1016/j.agwat.2018.09.004
  107. Lievens, H., H. Vernieuwe, J. Alvarez-Mozos, B. De Baets and N.E.C. Verhoest. 2009. Error in radar-derived soil moisture due to roughness parameterization: an analysis based on synthetical surface profiles. Sensors 9(2):1067-1093. https://doi.org/10.3390/s90201067
  108. Lim, B.G. and O.S. Ahn. 2013. A Study on R&D policy implications and future challenges using SWOT analysis and Technology-Trends analysis in SAR satellite field. Current Industrial and Technological Trends in Aerospace 11(1):122-141.
  109. Liu, C. and J. Shi. 2016. Estimation of vegetation parameters of water cloud model for global soil moisture retrieval using time-series L-band Aquarius observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(12):5621-5633. https://doi.org/10.1109/JSTARS.2016.2596541
  110. Liu, W.Y., K.S. Chen, M.K. Tsay and T.D. Wu. 2003. A re-examination of the IEM model for microwave scattering from randomly rough boundary. Journal of Chinese Institute of Engineers 26(3):271-277. https://doi.org/10.1080/02533839.2003.9670779
  111. Lopez-Sanchez, J.M., J.D. Ballester-Berman and I. Hajnsek. 2011. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X Dual-Pol images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(2):412-422. https://doi.org/10.1109/JSTARS.2010.2047634
  112. Lopez-Sanchez, J.M., S.R. Cloude and J.D. Ballester-Berman. 2012. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Transactions on Geoscience and Remote Sensing 50(7):2695-2709. https://doi.org/10.1109/TGRS.2011.2176740
  113. Lowe, A., M. Schwank and F. Schlenz. 2009. Assimilation of an L-band microwave soil moisture proxy to compensate for uncertainties in precipitation data. IEEE Transactions on Geoscience and Remote Sensing 47(8):2606-2616. https://doi.org/10.1109/TGRS.2009.2014846
  114. Manninen, T., P. Stenberg, M. Rautiainen, P. Voipio and H. Smolander. 2005. Leaf area index estimation of boreal forest using ENVISAT ASAR. IEEE Transactions on Geoscience and Remote Sensing 43(11):2627-2635. https://doi.org/10.1109/TGRS.2005.857325
  115. Matson, M., C.F. Roeplewski and M.S. Varnadore. 1986. An atlas of satellitederived northern hemisphere snow cover frequency. National Weather Service, Washington D.C. pp.75.
  116. Mattia, F. and T. Le Toan. 1999. Backscattering properties of multi-scale rough surfaces. Journal of Electromagnetic Waves and Applications 13(4):493-527. https://doi.org/10.1163/156939399X00240
  117. Mattia, F., G. Satalino, L. Dente and G. Pasquariello. 2006. Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions. IEEE Transactions on Geoscience and Remote Sensing 44(4):900-912. https://doi.org/10.1109/TGRS.2005.863483
  118. Matzler, C. 1987. Applications of the interaction of microwaves with the natural snow cover. Remote Sensing Reviews 2(2):259-387. https://doi.org/10.1080/02757258709532086
  119. Mazza, A., M. Gargiulo, R. Gaetano and G. Scarpa. 2018. Estimating the NDVI from SAR by convolutional neural networks. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, July 22-27, 2018. pp.1954-1957.
  120. McNairn, H., C. Champagne, J. Shang, D. Holmstrom and G. Reichert. 2009. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing 64(5):434-449. https://doi.org/10.1016/j.isprsjprs.2008.07.006
  121. MDA Corporation. 2020. RADARSAT-2 Pricing Information. https://mdacorporation.com/docs/default-source/product-spec-sheets/geospatial-services/pricelist.pdf?sfvrsn=12 (Accessed July 24, 2020).
  122. Melsheimer, C., W. Alpers and M. Gade. 1998. Investigation of multifrequency/multipolarization radar signatures of rain cells over the ocean using SIR-C/X-SAR data. Journal of Geophysical Research: Oceans 103(C9):18867-18884. https://doi.org/10.1029/98JC00779
  123. Merlin, O., A. Chehbouni, Y.H. Kerr and D.C. Goodrich. 2006. A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon '90 data. Remote Sensing of Environment 101(3):379-389. https://doi.org/10.1016/j.rse.2006.01.004
  124. Merz, R., J. Parajka and G. Bloschl. 2011. Time stability of catchment model parameters: implications for climate impact analyses. Water Resources Research 47(2):W02531. https://doi.org/10.1029/2010WR009505
  125. Merzouki, A., H. McNairn and A. Pacheco. 2010. Evaluation of the Dubois, Oh, and IEM radar backscatter models over agricultural fields using C-band RADARSAT-2 SAR image data. Canadian Journal of Remote Sensing 36(2):274-286.
  126. Moore, R.K., A. Mogili, Y. Fang, B. Beh and A. Ahamad. 1997. Rain measurement with SIRC/X-SAR. Remote Sensing of Environment 59(2):280-293. https://doi.org/10.1016/S0034-4257(96)00147-2
  127. Moore, W.S. 2006. The role of submarine groundwater discharge in coastal biogeochemistry. Journal of Geochemical Exploration 88(1-3):389-393. https://doi.org/10.1016/j.gexplo.2005.08.082
  128. Moran, M.S., D.C. Hymer, J.G. Qi and E.E. Sano. 2000. Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland. Agricultural and Forest Meteorology 105(1-3):69-80. https://doi.org/10.1016/S0168-1923(00)00189-1
  129. Naeimi, V., Z. Bartalis and W. Wagner. 2009a. ASCAT Soil Moisture: An assessment of the data quality and consistency with the ERS scatterometer heritage. Journal of Hydrometeorology 10(2):555-563. https://doi.org/10.1175/2008JHM1051.1
  130. Naeimi, V., K. Scipal, Z. Bartalis, S. Hasenauer and W. Wagner. 2009b. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Transactions on Geoscience and Remote Sensing 47(7):1999-2013. https://doi.org/10.1109/TGRS.2008.2011617
  131. Nagler, T. 1996. Methods and analysis of synthetic aperture radar data from ERS-1 and X-SAR for snow and glacier applications. Ph.D. dissertation, Univ. Innsbruck, Innsbruck, Austria. pp.183.
  132. Nagler, T. and H. Rott. 2000. Retrieval of wet snow by means of multitemporal SAR Data. IEEE Transactions on Geoscience and Remote Sensing 38(2):754-765. https://doi.org/10.1109/36.842004
  133. Nagler, T. and H. Rott. 2004. Snow classification algorithm for Envisat ASAR. Proceedings of the 2004 Envisat and ERS Symposium, Salzburg, Austria, September 6-10, 2004. pp.8.
  134. Navarro, A., J. Rolim, I. Miguel, J. Catalao, J. Silva, M. Painho and Z. Vekerdy. 2016. Crop monitoring based on SPOT-5 Take-5 and Sentinel-1A data for the estimation of crop water requirements. Remote Sensing 8(6):525. https://doi.org/10.3390/rs8060525
  135. Notarnicola, C., M. Angiulli and F. Posa. 2006. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Transactions on Geoscience and Remote Sensing 44(4):925-935. https://doi.org/10.1109/TGRS.2006.872287
  136. Notarnicola, C., M. Angiulli and F. Posa. 2008. Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method. IEEE Transactions on Geoscience and Remote Sensing 46(2):547-557. https://doi.org/10.1109/TGRS.2007.909951
  137. Oh, Y. 2004. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing 42(3):596-601. https://doi.org/10.1109/TGRS.2003.821065
  138. Oh, Y. 2008. Radar remote sensing of soil moisture and surface roughness for vegetated surfaces. Korean Journal of Remote Sensing 24(5):427-436.
  139. Oh, Y., K. Sarabandi and F.T. Ulaby. 1992. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing 30(2):370-381. https://doi.org/10.1109/36.134086
  140. Oh, Y., K. Sarabandi and F.T. Ulaby. 1994. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation. Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Pasadena, CA, USA, August 8-12, 1994. pp.1582-1584.
  141. Oh, Y., K. Sarabandi and F.T. Ulaby. 2002. Semi-empirical model of the ensembleaveraged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing 40(6):1348-1355. https://doi.org/10.1109/TGRS.2002.800232
  142. Paloscia, S. 1995. An empirical approach for retrieving leaf area index from multifrequency SAR data. International Geoscience and Remote Sensing Symposium, Quantitative Remote Sensing for Science and Applications, Firenze, Italy, August 6, 2002. pp.967-969.
  143. Paloscia, S. 2002. A summary of experimental results to assess the contribution of SAR for mapping vegetation biomass and soil moisture. Canadian Journal of Remote Sensing 28(2):246-261. https://doi.org/10.5589/m02-020
  144. Paloscia, S., P. Pampaloni, S. Pettinato and E. Satni. 2008. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images. IEEE Transactions on Geoscience and Remote Sensing 46(10):3274-3284. https://doi.org/10.1109/TGRS.2008.920370
  145. Pan, E. and E.F. Wood. 2010. Impact of accuracy, spatial availability, and revisit time of satellite-derived surface soil moisture in a multiscale ensemble data assimilation system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3(1):49-56. https://doi.org/10.1109/JSTARS.2010.2040585
  146. Panciera, R., M.A. Tanase, K. Lowell and J.P. Walker. 2013. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR. IEEE Transactions on Geoscience and Remote Sensing 52(8):4966-4979. https://doi.org/10.1109/TGRS.2013.2286203
  147. Parada, L.M. and X. Liang. 2008. Impacts of spatial resolutions and data quality on soil moisture data assimilation. Journal of Geophysical Research Atmospheres 113(D10):D10101. https://doi.org/10.1029/2007JD009037
  148. Parajka, J., V. Naeimi, G. Bloschl and J. Komma. 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrology and Earth System Scieces 13:259-271. https://doi.org/10.5194/hess-13-259-2009
  149. Pathe, C., W. Wagner, D. Sabel, M. Doubkova and J.B. Basara. 2009. Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Transactions on Geoscience and Remote Sensing 47(2):468-480. https://doi.org/10.1109/TGRS.2008.2004711
  150. Peel, M.C. and G. Bloschl. 2011. Hydrological modelling in a changing world. Progress in Physical Geography: Earth and Environment 35(2):249-261. https://doi.org/10.1177/0309133311402550
  151. Pierdicca, N., P. Castracane and L. Pulvirenti. 2008. Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data. Sensors 8(12):8181-8200. https://doi.org/10.3390/s8128181
  152. Prevot, L., I. Champion and G. Guyot. 1993. Estimating surface soil moisture and leaf area index of a wheat canopy using a dualfrequency( C and X bands) scatterometer. Remote Sensing of Environment 46(3):331-339. https://doi.org/10.1016/0034-4257(93)90053-Z
  153. Punithraj, G., U. Pruthviraj and A. Shetty. 2020. Surface soil moisture retrieval using C-band Synthetic Aperture Radar (SAR) over Yanco study site, Australia-A preliminary Study. Applications of Geomatics in Civil Engineering 33:107-121. https://doi.org/10.1007/978-981-13-7067-0_8
  154. Quesney, A., S. Le Hegarat-Mascle, O. Taconet, D. Vidal-Madjar, J.P. Wigneron, C. Loumagne and M. Normand. 2000. Estimation of watershed soil moisture index from ERS/SAR data. Remote Sensing of Environment 72(3):290-303. https://doi.org/10.1016/S0034-4257(99)00102-9
  155. Rahman, M.M., M.S. Moran, D.P. Thoma, R. Bryant, C.D.H. Collins, T. Jackson, B.J. Orr and M. Tischler. 2008. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sensing of Environment 112(2):391-402. https://doi.org/10.1016/j.rse.2006.10.026
  156. Rahman, M.M., M.S. Moran, D.P. Thoma, R. Bryant, E.E. Sano, C.D.H. Collins, S. Skirvin, C. Kershner and B.J. Orr. 2007. A derivation of roughness correlation length for parameterizing radar backscatter models. International Journal of Remote Sensing 28(18):3995-4012. https://doi.org/10.1080/01431160601075533
  157. Rakotoarivony, L., O. Taconet, D. Vidal-Madjar, P. Bellemain and M. Benallegue. 1996. Radar backscattering over agricultural bare soils. Journal of Electromagnetic Waves and Applications 10(2):187-209. https://doi.org/10.1163/156939396X00964
  158. Rott, H. and C. Matzler. 1987. Possibilities and limitations of synthetic aperture radar for snow and glacier surveying. Annals of Glaciology 9:195-199. https://doi.org/10.3189/S0260305500000604
  159. Sahebi, M. and J. Angles. 2010. An inversion method based on multi-angular approaches for estimating bare soil surface parameters from RADARSAT-1. Hydrology and Earth System Sciences 14(11):2355-2366. https://doi.org/10.5194/hess-14-2355-2010
  160. Said, S., U.C. Kothyari and M.K. Arora. 2008. ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data. Journal of Hydrologic Engineering 13(6):461-475. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(461)
  161. Santi, E., M. Dabboor, S. Pettinato and S. Paloscia. 2019. Combining machine learning and compact polarimetry for estimating soil moisture from C-band SAR data. Remote Sensing 11(20):2451. https://doi.org/10.3390/rs11202451
  162. Satalino, G., F. Mattia, M.W.J. Davidson, T. Le Toan, G. Pasquariello and M. Borgeaud. 2002. On current limits of soil moisture retrieval from ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing 40(11):2438-2447. https://doi.org/10.1109/TGRS.2002.803790
  163. Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowski and A.J. Teuling. 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Review 99(3-4):125-161. https://doi.org/10.1016/j.earscirev.2010.02.004
  164. Shi, J.C. and J. Dozier, 1997. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing of Environment 59(2):294-307. https://doi.org/10.1016/S0034-4257(96)00146-0
  165. SIIS(SI Imaging Services Co., LTD). 2015. KOMPSAT-5 Product Specifications. https://www.si-imaging.com/products/#1478507064219-34e51d03-67d9. (Accessed July 25, 2020).
  166. Slomp, C. P. and P. Van Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology 295(1-4):64-86. https://doi.org/10.1016/j.jhydrol.2004.02.018
  167. Srivastava, H.S., P. Patel and R.R. Navalgund. 2006. Incorporating soil texture in soil moisture estimation from extended low-1 beam mode RADARSAT-1 SAR data. International Journal of Remote Sensing 27(12):2587-2598. https://doi.org/10.1080/01431160500497838
  168. Srivastava, H.S., P. Patel, R.R. Navalgund and Y. Sharma. 2008. Retrieval of surface roughness using multi-polarized Envisat-1 ASAR data. Geocarto International 23(1):67-77. https://doi.org/10.1080/10106040701538157
  169. Srivastava, H.S., P. Patel, Y. Sharma and R.R. Navalgund. 2009. Large-area soil moisture estimation using multi-incidence -angle RADARSAT-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing 47(8):2528-2535. https://doi.org/10.1109/TGRS.2009.2018448
  170. Stankiewicz, K.A. 2006. The efficiency of crop recognition on Envisat ASAR images in two growing seasons. IEEE Transactions on Geoscience and Remote Sensing 44(4):806-814. https://doi.org/10.1109/TGRS.2006.864380
  171. Strozzi, T. and C. Matzler. 1998. Backscattering measurements of alpine snow covers at 5.3 and 35GHz. IEEE Transactions on Geoscience and Remote Sensing 36(2):838-848. https://doi.org/10.1109/36.673677
  172. Su, Z., P.A. Troch and F.P. De Troch. 1997. Remote sensing of bare surface soil moisture using EMAC/ESAR data. International Journal of Remote Sensing 18(10):2105-2124. https://doi.org/10.1080/014311697217783
  173. Thoma, D.P., M.S. Moran, R. Bryant, M.M. Rahman, C.D.H. Collins, T.O. Keefer, R. Noriega, I. Osman, S.M. Skrivin, M.A. Tischler, D.D. Bosch, P.J. Starks and C. Peters-Lidard. 2008. Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils. Remote Sensing of Environment 112(2):403-414. https://doi.org/10.1016/j.rse.2007.06.021
  174. Tiuri, M., A. Sihvola, E. Nyfors and M. Hallikainen. 1984. The complex dielectric constant of snow at microwave frequencies. IEEE Journal of Oceanic Engineering 9(5):377-382. https://doi.org/10.1109/JOE.1984.1145645
  175. Ulaby, F.T., C.T. Allen, G. Eger and H. Kanemasu. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sensing of Environment 14(1-3):113-133. https://doi.org/10.1016/0034-4257(84)90010-5
  176. Ulaby, F.T., R.K. Moore and A.K. Fung. 1982. Microwave remote sensing: active and passive, vol. 2. Addison-Wesley Publishers, Reading, Mass. pp.2162.
  177. Ulaby, F.T. and W.H. Stiles. 1980. The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow. Journal of Geophysics Research 83(C2):1045-1049. https://doi.org/10.1029/JC085iC02p01045
  178. Van Leeuwen, H.J.C. and J.G.P.W. Clevers. 1994. Synergy between optical and microwave remote sensing for crop growth monitoring. Proceedings of the 6th Symposium of Physical Measurements and Signatures in Remote Sensing, Val d'Isere, France, 1994. pp.1175-1182.
  179. van Oevelen, P.J. and D.H. Hoekman. 1999. Radar backscatter inversion techniques for estimation of surface soil moisture: EFEDA-Spain and HAPEX- Sahel case studies. IEEE Transactions on Geoscience and Remote Sensing 37(1):113-123. https://doi.org/10.1109/36.739141
  180. Verhoest, N.E.C., B. De Baets, F. Mattia, G. Satalino, C. Lucau and P. Defourny. 2007. A possibilistic approach to soil moisture retrieval from ERS synthetic aperture radar backscattering under soil roughness uncertainty. Water Resources Research 43(7):W07435. https://doi.org/10.1029/2006WR005295
  181. Verhoest, N.E.C., H. Lievens, W. Wagner, J. Alvarez-Mozos, M.S. Moran and F. Mattia. 2008. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors 8(7):4213-4248. https://doi.org/10.3390/s8074213
  182. Vreugdenhil, M., A. Dorigo, W. Wagner, R.A.M. de Jeu, R., S. Hahn and M.J.E. van Marle. 2016. Analyzing the vegetation parameterization in the TUWien ASCAT soil moisture retrieval. IEEE Transactions on Geoscience and Remote Sensing 54(6):3513-3531. https://doi.org/10.1109/TGRS.2016.2519842
  183. Vreugdenhil, M., W. Wagner, B. Bauer-Marschallinger, I. Pfeil, I. Teubner, C. Rudiger and P. Strauss. 2018. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sensing 10(9):1396. https://doi.org/10.3390/rs10091396
  184. Wagner, W., C. Pathe, M. Doubkova, D. Sabel, A. Bartsch, S. Hasenauer, G. Bloschl, K. Scipal, J. Martinez-Fernandez and A. Low. 2008. Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar(ASAR). Sensors 8(2):1174-1197. https://doi.org/10.3390/s8021174
  185. Wagner, W., G. Lemoine, M. Borgeaud and H. Rott. 1999a. A study of vegetation cover effects on ERS scatterometer data. IEEE Transactons on Geoscience and Remote Sensing 37(2):938-948. https://doi.org/10.1109/36.752212
  186. Wagner, W., G. Lemoine and H. Rott. 1999b. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment 70(2):191-207. https://doi.org/10.1016/S0034-4257(99)00036-X
  187. Wagner, W., J. Noll, M. Borgeaud and H. Rott. 1999c. Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing 37(1):206-216. https://doi.org/10.1109/36.739155
  188. Wagner, W. and K. Scipal. 2000. Largescale soil moisture mapping in western Africa using the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing 38(4):1777-1782. https://doi.org/10.1109/36.851761
  189. Wagner, W., K. Scipal, C. Pathe, D. Gerten, W. Lucht and B. Rudolf. 2003. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. Journal of Geophysical Research Atmosphers 108(D19):4611. https://doi.org/10.1029/2003JD003663
  190. Walker, E. and B.E. Goodison. 1993. Discrimination of a wet snow cover using passive microwave satellite data. Annals of Glaciology 17:307-311. https://doi.org/10.3189/S026030550001301X
  191. Wang, C., J. Qi, J. Moran and R. Marsett. 2004. Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery. Remote Sensing of Environment 90(2):178-189. https://doi.org/10.1016/j.rse.2003.12.001
  192. Wang, J.R., A. Hsu, J.C. Shi, P.E. O'Neill and E.T. Engman. 1997. A comparison of soil moisture retrieval models using SIR -C measurements over the little Washita River watershed. Remote Sensing of Environment 59(2):308-320. https://doi.org/10.1016/S0034-4257(96)00145-9
  193. Weinman, J.A., F.S. Marzano, S. Mori, W.J. Plant, Z.S. Haddad, S.L. Durden and A. Mugnai. 2009. Rainfall measurement with space-borne X-band synthetic aperture radars: A new opportunity. Proceedings of 16th Conference on Satellite Meteorology and Oceanography, Phoenix, AZ, USA, January 12-15, 2009. pp.1-9.
  194. Wooldridge, S.A., J.D. Kalma and J.P. Walker. 2003. Importance of soil moisture measurements for inferring parameters in hydrologic models of low-yielding ephemeral catchments. Environmental Modelling and Software 18(1):35-48. https://doi.org/10.1016/S1364-8152(02)00038-5
  195. Wu, T., K.S. Chen, J. Shi and A.K. Fung. 2001. A transition model for the reflection coefficient in surface scattering. IEEE Transactions on Geoscience and Remote Sensing 39(9):2040-2050. https://doi.org/10.1109/36.951094
  196. Wu, T.D. and K.S. Chen. 2004. A reappraisal of the validity of the IEM model for backscattering from rough surfaces. IEEE Transactions on Geoscience and Remote Sensing 42(4):743-753. https://doi.org/10.1109/TGRS.2003.815405
  197. Xu, H., M.D. Steven and K.W. Jaggard. 1996. Monitoring leaf area of sugar beet using ERS-1 SAR data. International Journal of Remote Sensing 17(17):3401-3410. https://doi.org/10.1080/01431169608949158
  198. Yadav, V.P., R. Prasad, R. Bala and A.K. Vishwakarma. 2020. An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C-band Sentinel-1A SAR data. Computers and Electronics in Agriculture 173:105447. https://doi.org/10.1016/j.compag.2020.105447
  199. Yang, D.C. 2018. Recent trends in Synthetic Aperture Radar(SAR) applications and technology. Current Industrial and Technological Trends in Aerospace 16(1):127-135.
  200. Yoon, B.Y., G.J. Lee, Y.S. Kim and Y.S. Kim. 2006. Development trend of SAR earth observation satellite. Current Industrial and Technological Trends in Aerospace 4(2):40-48.
  201. Zribi, M., N. Baghdadi, N. Holah and O. Fafin, 2005. New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multiincidence data inversion. Remote Sensing of Environment 96(3-4):485-496. https://doi.org/10.1016/j.rse.2005.04.005
  202. Zribi, M., V. Ciarletti and O. Taconet. 2000. Validation of a rough surface model based on fractional Brownian geometry with SIRC and ERASME radar data over Orgeval. Remote Sensing of Environment 73(1):65-72. https://doi.org/10.1016/S0034-4257(00)00082-1
  203. Zribi, M. and M. Dechambre. 2002. A new empirical model to inverse soil moisture and roughness using two radar configurations. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, Ontario, Canada, June 24-28, 2002. pp.2223-2225.
  204. Zribi, M., S. Saux-Picart, C. Andre, L. Descroix, C. Ottle and A. Kallel. 2007. Soil moisture mapping based on ASAR/ENVISAT radar data over a Sahelian region. International Journal of Remote Sensing 28(16):3547-3565. https://doi.org/10.1080/01431160601009680
  205. Zribi, M., O. Taconet, S. Le Hegarat-Mascle, D. Vidal-Madjar, C. Emblanch, C. Loumagne and M. Normand. 1997. Backscattering behavior and simulation comparison over bare soils using SIRC/X-SAR and ERASME 1994 data over Orgeval. Remote Sensing of Environment 59(2):256-266. https://doi.org/10.1016/S0034-4257(96)00158-7