• Title/Summary/Keyword: 지구와 우주

Search Result 778, Processing Time 0.031 seconds

Application of Drought System using Multi-sensor Satellite Data (다중위성 강우 가뭄활용에 관한 연구)

  • Park, Kyung Won;Jang, Sang Min;Yoon, Sun Kwon;Shin, Yong Chul;Lee, Seong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.250-250
    • /
    • 2016
  • 인공위성을 이용한 강수관측은 전 지구적 규모에서 시공간적으로 균일한 강수정보를 지속적으로 제공할 수 있으며, 가뭄에 중요한 하나의 변수로서 가뭄정보를 제공할 수 있다는 장점이 있어 점차적으로 미계측지역 수문학적으로 활용성이 증대되고 있다. 그러나 인공위성 기반 강수관측자료는 지상관측 강우자료에 비해 시 공간해상도가 낮고, 관측 당시의 대기 상태, 관측기기, 시 공간적 대표성 문제 등에서 기인한 많은 불확실성을 포함하고 있다. 이러한 불확실성을 보완하기 위한 목적으로 미국 항공우주국 (National Aeronautics and Space Administration: NASA)는 GPM(Global Precipitation Measurement) 위성을 핵심위성으로 한 다중 위성자료를 이용하여 전지구적으로 30분 간격, 10 km 해상도의 GPM IMERG (Integrated Multi-satellitE Retrievals for GPM)를 생산 제공하고 있다. 본 연구에서는 다중 인공위성 추정 강수의 가뭄 활용성을 검토하기 위한 목적으로 GPM IMERG 위성 강우 자료(Early run, Late run, Final run)의 검증 및 평가를 수행하고자 하였으며, 각각의 자료들을 강수사례에 적용하여 10 km, 30분 해상도를 가지는 1.5km CAPPI (Constant Altitude Plan Position Indicator) 레이더 및 지상 강우자료와 비교 검증하였다.

  • PDF

Derivation of Radiometric Calibration Coefficients for KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model: An Exploratory Example (복사전달모델을 이용한 KOMPSAT-3A 중적외선 데이터의 복사보정계수 산출: 탐구적 사례)

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1629-1634
    • /
    • 2020
  • It is essential to convert the Digital Number (DN) measured from Earth observing satellites into the physical parameter of radiance when deriving the geophysical parameter such as surface temperature in the satellite data processing. The purpose of this study is to update the DN·Radiance equation established from lab measurements, using the KOMPSAT-3A mid-wave infrared data and the MODTRAN radiative transfer model. Results of this study show that the improved DN·Radiance equation allows us to produce the realistic values of radiance. We expect in the forthcoming study that the radiances calculated as such should be more quantitatively validated with the use of relevant in-situ measurements and a radiative transfer model.

The Definition and Regulations of Drone in Korea (韓国におけるドロ?ンの定義と法規制)

  • Kim, Young-Ju
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.34 no.1
    • /
    • pp.235-268
    • /
    • 2019
  • Under the Aviation Safety Act of Korea, any person who intends to operate a drone is required to follow the operational conditions listed below, unless approved by the Minister of Land, Infrastructure, Transport and Tourism; (i) Operation of drones in the daytime, (ii) Operation of drones within Visual Line of Sight, (iii) Maintenance of a certain operating distance between drones and persons or properties on the ground/ water surface, (iv) Do not operate drones over event sites where many people gather, (v) Do not transport hazardous materials such as explosives by drone, (vi) Do not drop any objects from drones. Requirements stated in "Airspace in which Flights are Prohibited" and "Operational Limitations" are not applied to flights for search and rescue operations by public organizations in case of accidents and disasters. This paper analyzes legal issues as to definition and regulations of drones in Korean Aviation Safety Act. This paper, also, offers some implications and suggestions for regulations of drones under Korean Aviation Safety Act by comparing the regulations of drones in Japanese Civil Aeronautics Act.

International Comparative Study on Astronomical Exhibits: Focus on Exhibit Characteristics and Earth Science Curriculum Reflected in Exhibits (천체 전시물 비교 연구 -전시특성 및 지구과학 교육과정의 반영 정도를 중심으로-)

  • Kim, Soo Kyung;Park, Eun Ji;Kim, Chan Jong;Choe, Seung Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.925-934
    • /
    • 2016
  • For students, astronomy is not only interesting but also difficult to learn. However, there is a limit in learning astronomy in a school science setting since astronomy is vast subject. Fortunately, science museums can be helpful in overcoming this limitation. Experiences in science museum provide something that any descriptions or illustrations cannot give. Therefore, to maximize the educational effect, it is necessary to look at astronomical exhibits regarding the educational aspects and complement them. For these reasons, the purpose of this study is to investigate characteristics of exhibitions related to astronomy and how much the exhibitions reflect the contents of their science curricula. We selected famous science museums in Korea, America, and Japan and analyzed characteristics of their astronomy exhibition. We analyze these characteristics in the aspects of exhibition technology & media, presentation method and activity types. Also, this study figures out how content of exhibitions are connected to school science curriculum. The results are summarized as follows: First, Science Museums of America and Japan utilize interactive exhibits to raise participation. It implies that Science Museum of Korea needs Interactive Exhibits that provide a realistic experience of the universe. Second, the astronomy exhibits reflect some of the learning elements of their science curricula concerned with astronomy. However, these astronomical contents are included selectively and not according to their required curriculum. It means that many students lack the opportunity to study Astronomy in their schools. Therefore, the astronomy museum must reflect learning elements of science curricula concerned with astronomy in the exhibits.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

Analysis of Achievement Characteristics by Achievement Standard of the Middle School Curriculum Based on the National Assessment of Educational Achievement (학업성취도 평가 결과에 기반한 중학교 교육과정 성취기준별 성취 특성 분석)

  • Lee, Jaebong;Ku, Jaok;Choi, Wonho;Shim, Kew-Cheol;Shin, Myeong-Kyeong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • The purpose of this study was to analyze the characteristics of students' academic achievement of middle school science curriculum achievement standards in the 2009 revised national curriculum and to generate implications for curriculum improvement. Based on the results of the 2015-2018 National Assessment of Educational Achievement (NAEA), we analyzed middle school students' mastery of 84 curriculum achievement standards. In the analysis, we used representative item information by achievement level and correct answer rate and checked the validity of the determination of mastery. According to the results of the analysis, 15 of the 84 achievement standards could not determine the degree of achievement. In science, many achievement standards could be mastered only by above-average group students. By achievement level, there were six achievement standards that advanced achievement-level students did not achieve, 38 achievement standards judged to represent mastery by advanced achievement-level students, 23 achievement standards judged to represent mastery by proficient achievement-level students, and two achievement standards judged to represent mastery by basic achievement-level students. By content area, the number of achievement standards corresponding to advanced and proficient levels was similar in the areas of motion and energy and earth and space domains. In the material and life domains, there were more achievement standards corresponding to advanced levels. Accordingly, it is necessary to reinforce customized teaching and learning activities in relation to achievement standards that were under-achieved.

A Study of the Potential Shelters in the Lunar Lava Tubes (달 동굴의 잠재적 주거환경에 관한 연구)

  • Oh, Jongwoo
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.41-49
    • /
    • 2017
  • This paper will describe lunar lava tubes' five analyzed fields, such as geology, geomorphology, internal configuration, stability, communication and habitats requirements. This research gets through qualitative and qualitative data analysis as following results. A huge size and configuration differences between lunar lava tubes and earth one on geology and landform environments. Exo-genetics activities, such as meteorites, radiation, and sudden temperature bigger affect than Endo-genetic activities, such as effusion and earthquake of the lunar lava tubes. Landform and internal configuration of the lunar lava tubes due to the huge cave perilous landform that gravity difference have a technical limitation from internal approach and data obtain of the huge skylights and sinuous rilles. Stability of the lunar lava tubes deals with geology and landform. It was obvious geo-structural stability elements results generated on low rate of collapsed halls(skylights), low gravity, and relatively thick covers. In terms of the communication capability on the external and internal lunar lava tubes cordless communication techniques will overcome limitations of the sun-power generates supporting communication systems. Through this research it realized obvious differs between potential habitats possibility by accumulative theories by scholars and techniques of the lunar lava tubes. Especially, it is a favorable expectation throughout overcoming attempt on zero gravity, cosmo radiation, lunar dust of the exo-genetic limitations to the steep escarpment of skylights to approach and achieve techniques by the civil engineering, networking and GIS techniques as the endo-genetic environment treatment.

An Analysis of the Result of National Assessment of Educational Achievement in Science at Grade 9 (국가수준 학업성취도 평가에 나타난 중학교 3학년 학생들의 과학 성취도 분석)

  • Kim, Hyun-Kyung;Jeong, Jin-Su
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.394-407
    • /
    • 2012
  • This study analyzed the result of the National Assessment of Educational Achievement (NAEA) in a Grade 9 Science class. The study first found that the ratio of below basic achievement was 8.1 percent. This means that a large number of middle school students have not reached basic scientific literacy. Second, the ratio of male students in the below basic level was 10.4 percent, which was double the ratio of female students at 5.5 percent. Third, according to the analysis of achievement by gender, female students outperformed male students. In addition, the female students' standard deviation was smaller than that of the male students, and their scaled scores were distributed nearer the average than that of the male students. Furthermore, analysis of achievement by content domains indicated that females outperformed in all content domains including motion and energy, materials, life, and earth sciences. Showing a similar tendency in the behavior domains, females outperformed males in all behavior domains except the understanding domain. Last, for achievement by living area, students living in the middle and small cities showed the highest scaled score, 196.81. Whereas the average scaled score of the students living in the big cities was 196.15; that of the students living in rural areas was 194.86. With respect to the standard deviation, big cities had the largest, 33.73. That of middle and small cities was 33.70, and of rural areas was 32.92. Although students in cities showed higher achievement in science compared to students in rural areas, they had a bigger gap in academic achievement.

  • PDF

Integrated Ray Tracing Model for In-Orbit Optical Performance Simulation for GOCI (통합적 광추적 모델에 의한 해양탑재체 GOCI의 궤도 상 광학 성능 검증)

  • Ham, Seon-Jeong;Lee, Jae-Min;Kim, Seong-Hui;Yun, Hyeong-Sik;Gang, Geum-Sil;Myeong, Hwan-Chun;Kim, Seok-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • GOCi (Geostationary Ocean Color Imager) is one of the COMS payloads that KARI is currently developing and scheduled to be in operation from around 2008. Its primary objective is to monitor the Korean coastal water environmental condition. We report the current progress in development of the integrated optical model as one of the key analysis tools for the GOCI in-orbit performance verification. The model includes the Sun as the emitting light source. The curved Earth surface section of 2500 km x 2500 km includingthe Korean peninsular os defined as a Lambertian scattering surface consisted of land and sea surface. From its geostationary orbit, the GOCI optical system observes the reflected light from the surfaces with varying reflectance representing the changes in its environmental conditions. The optical ray tracing technique was used to demonstrate the GOCI in-orbit performances such as red tide detection. The computational concept, simulation results and its implications to the on-going development of GOCI are presented.

  • PDF

Performance Estimation of Receiving Data Parket of TT&C System on the Pass Time of LEO Satellite (저궤도 위성의 통과시간에서 관제 시스템의 수신 데이터 패킷 성능 예측)

  • 장대익;김대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1149-1155
    • /
    • 1999
  • LEO(Low altitude Earth Orbit) Satellite systems have been utilized in the field of earth and scientific observation (cartography mission, ocean color monitoring, bioglogical coeanography, space environments observation by space physics sensor, and meteorological observation, atmospheric observation etc.), and the field of military (military communications and secret information, enemy reconnaissance etc.), and recently been developing in the field of mobile satellite commnication of GMPCS for commercial utilization. In Korea, KOMPSAT I satellite and ground system are been developing and planed to be lunched on October 1999 In this paper, the link budge of the TT&C system for LEO satellite is described and the relations between elevation angle and pass time of LEO satellite are calculated according to satellite moving. And the packet error rates of receiving data are derived three packet error rates(PER) of real-time(RT) mode, playback(PB) mode, and real-time and range tone(RT+RNG) mode are estimated according to pass time of satellite. The results of PER are the best at real-time and the worst at real-time mode and range mode at the all pass time of satellite. The average error free packet(EFP)s of real-time mode, playback mode, and real-time and range tone for the pass time of satellite are obtained as 99.999999%, 99.999912%, 99.995945% respectively. Therefore, transmission sequence of telemetry data are determined such as PER sequence according to pass time, namely, real-time, playback, and real-time and range mode.

  • PDF