• Title/Summary/Keyword: 좌굴 설계 기준

Search Result 121, Processing Time 0.022 seconds

Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis (2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계)

  • Kyung, Yong Soo;Lee, Chang Hwan;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.465-474
    • /
    • 2008
  • Generally design of frame structures composed of beam-column member is accomplished by stability evaluation of each member considering the effective buckling length. This study selects a member of the smallest non-dimension slenderness ratio using the buckling eigenvalue calculated by the elastic buckling eigen-value analysis and axial force of the each member, and decides the initial deflection quantity reflected geometric and material nonlinearities from a suggested equation on the base of standard strength curve of Korea Bridge Design Code. Second-order elastic analysis applying the initial deflection is executed and the stability of each member is evaluated and decides ultimate strength. Through examples of eight-stories and four-stories plane frame structures, the evaluation of the stability is compared with the existing method and ultimate strength of the suggested method is compared with ultimate strength by the nonlinear inelastic analysis. Through these procedures, the increasing of effective buckling length by elastic buckling eigenvalue analysis is prevented from a new design method that considers initial imperfections. And the validity of this method is proved.

Comparison of Wind Load Provisions Based on the Wind Buckling Behaviors of Plant Tank (플랜트 탱크의 좌굴 거동에 근거한 풍하중 설계기준 비교 연구)

  • Bae, Doobyong;Park, Il Gyu;Park, Jang Ho;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • There are no consistent wind load provisions to design the plant tank in Korea. To suggest the appropriate design wind load, five kinds of specifications including KS B 6283, API 650, ASCE 7-10, EN 1991-1-4 are compared. To evaluate the adequacy of wind load specification in each code first, pressure coefficients were calculated in each code and compared with the results of wind tunnel test. Finite element analyses using linear bifurcation analysis were performed with the parameter of h/d and f/d (h : height of cylinderical part of tank, f : roof heigh, d : diameter of tank). By analyzing the results, appropriate wind load criteria which reflects the real wind actions and easy to apply will be suggested.

Improved Stability Design of Plane Frame Members (평면프레임 구조의 개선된 좌굴설계)

  • Kim, Moon Young;Song, Ju Young;Kyung, Yong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.225-237
    • /
    • 2006
  • Based on the study conducted by Kim et al. (205a, b), an improved stability design method for evaluating the effective buckling lengths of beam-column members is proposed herein, using system elastic/inelastic buckling analysis and second-order elastic analysis. For this purpose, the stress-strain relationship of a column is inversely formulated from the reference load-carrying capacity proposed in design codes, so as to derive the tangent modulus of a column as a function of the slenderness ratio. The tangent stiffness matrix of a beam-column element is formulated using the so-called "stability functions," and elastic/inelastic buckling analysis Effective buckling lengths are then evaluated by extending the basic concept of a single simply-supported column to the individual members as one component of a whole frame structure. Through numerical examples of several structural systems and loading conditions, the possibilities of enhancement in stability design for frame structures are addressed by comparing their numerical results obtained when the present design method is used with those obtained when conventional stability design methods are used.

A Study on the Secondary Buckling of Plate Structure by Arc Length Method (호장증분법에 의한 판구조물의 2차좌굴거동에 관한 연구)

  • 고재용;최익창
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.209-218
    • /
    • 1998
  • 고장력강이 구조강재로서 널리 사용되고 있다. 구조물의 극심한 하중을 받게되면 최종강도에 도달할 때까지 좌굴을 동반하게 된다. 그러므로, 고장력강판의 좌굴에 대한 정확한 평가가 중요한 설계기준이 되고 있다. 그러나, 고장력강을 효율적으로 사용하기 위해서는 좌굴허용설계를 도입할 수 있도록 판구조물의 판두께가 얇아져야 한다. 따라서, 박판구조물의 합리적인 설계를 하기 위해서는 좌굴후거동해석이 매우 중요하다. 그러므로, 본 논문에서는 호장증분법을 이용하여 압출하중을 받는 박판구조물의 초기좌굴후거동과 2차좌굴강도에 대하여 규명하였다. 특히, 호장증분법을 좌굴정에서의 하중경로를 추정하기 위하여 적용하였다.

  • PDF

Determination of Efficient Shear Stud Spacing in Steel-Concrete Panel(SCP) considering Local Buckling Behavior (국부좌굴 현상을 고려한 강판 콘크리트 패널의 효율적인 스터드 배치 간격 설정)

  • Kim, JoungRae;Lee, WonHo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.479-484
    • /
    • 2017
  • In this paper, finite element analysis of Steel-Concrete panel(SCP) was conducted considering the local buckling behavior and the optimized design of shear studs arrangement was studied by comparing with design guidelines. If the spacing of the studs of SCP is widened, it is easy to be manufactured and the weight fo members become lighter. On the other hand, the steel plate would be vulnerable to the local buckling behavior. Therefore, the guidance and design of SCP limit the maximum spacing of the studs to prevent the development of shear cracks and local buckling, however this is based on the design criteria of the other composite structures. Parameter studies with changes in stud spacing on steel plate and SCP are conducted and the obtained result was compared with values given in design guidelines.

Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios (다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출)

  • Kim, Do-Young;Sim, Chang-Hoon;Kim, Han-Il;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2021
  • This paper derives numerically new buckling Knockdown factors for the lightweight design of the composite propellant tanks for space launch vehicles. A nonlinear finite element analysis code, ABAQUS, is used for the present postbuckling analysis of composite cylinders under compressive loads. Various thickness ratios (R/t) and slenderness ratios (L/R) are considered and Single Perturbation Load Approach is applied to represent the geometric initial imperfection of the composite cylinder. For the composite cylinder with thickness ratio of 500 and slenderness ratio of 2.04, the buckling Knockdown factor derived in this work is higher by 84.38% than NASA's previous buckling design criteria. Therefore, it is investigated that a lightweight design is possible when the present Knockdown factors are used for the design of composite propellant tanks. In addition, it is shown that global buckling loads and buckling Knockdown factors decrease as the thickness ratio or slenderness ratio of composite cylinders increases.

Derivation of Knockdown Factors for Composite Cylinders with Various Initial Imperfection Models (초기 결함 조건 모델에 따른 복합재 원통 구조의 좌굴 Knockdown factor 도출)

  • Kim, Do-Young;Sim, Chang-Hoon;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.283-289
    • /
    • 2021
  • This paper derives numerically the buckling Knockdown factors using two different initial imperfection models, such as geometric and loading imperfection models, to investigate the unstiffened composite cylinder with an ellipse pre-buckling deformation pattern. Single Perturbation Load Approach (SPLA) is applied to represent the geometric initial imperfection of a thin-walled composite cylinder; while Single Boundary Perturbation Approach (SBPA) is used to represent the geometric and loading imperfections simultaneously. The buckling Knockdown factor derived using SPLA is higher than NASA's buckling design criteria by approximately 84%, and lower than buckling test result by 9%. The buckling Knockdown factor using SBPA is higher than NASA's buckling design criteria by about 75%, and 14% lower than the buckling test result. Therefore, it is shown that the buckling Knockdown factors derived in this study can provide a lightweight design compared to the previous buckling design criteria while they give reasonably a conservative design compared to the buckling test for both the initial imperfection models.

Experimental Study on the Buckling Behavior of L-Shaped Header System (L-헤더 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.665-674
    • /
    • 2002
  • The back-to-back and box-shaped headers used in light gauge steel structures have some disadvantages, i.e., construction efficiency and cost competitiveness. As such, cold-formed steel L-shaped headers have been developed and are used actively in advanced nations. However, this system has not been used in Korea because of inadequate investigation and adaptation efforts and lack of application example. Thus, this research evaluated the structural performance of L-header using buckling analyses and bending tests. Test results were compared using the AISI design criteria. Test results showed that local buckling and distortional buckling governed buckling behavior in gravity loads and uplift loads, respectively. These results were consistent with the calculated nomial strengths using the AISI design criteria.

Optimal Design and Verification Studies on Orthogrid-Stiffened Cylinders Incorporating Improved Buckling Knockdown Factors (개선된 좌굴 설계 기준을 이용한 직교 격자 원통 구조의 최적 구조 설계 및 검증 연구)

  • Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2024
  • Optimal design and verification studies were performed on an orthogrid-stiffened cylinder for a propellant tank of a space launch vehicle. Hypersizer, an optimal design code for aerospace structures, was used in the present optimal design study. Design optimization was conducted to minimize structural weight of the orthogrid-stiffened cylinder. In this study, KDFs with different values (0.40, 0.83, and 0.92) were considered for the design optimization. Three optimal cylinders were designed. As the KDF increased from 0.40 to 0.83 and 0.92, structural weights of optimal design models decreased by 27.70% and 30.08%, respectively. Postbuckling analysis was conducted using ABAQUS. Results showed that global buckling loads of those optimally designed models were higher than the design load. Global buckling loads of those optimal design models with initial imperfection were derived to be at least 1.64% higher than the design load (2,860 kN). Results of this study demonstrated that the optimal design satisfying the design load was appropriately conducted.

The Bucking Strength and the Application of design of Design Formula of High Strength H-Shaped Section Steel Members (고강도 H형강 부재의 좌굴내력과 설계식에의 적용에 관한 연구)

  • Kim, Jin Kyong;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2001
  • The objective of this study is to investigate the criteria of the width-to-thickness ratio and to evaluate the buckling strength of high strength steel beam-columns and to compare their buckling strength with design codes, which are the Limit State Design code and the Allowable Stress Desogn code(drift). SM520TMC and SM570Q class steels are used for high strength steels. The coupon test and the stub column test were carried out to investigate the properties of high strength steels and the stress-strain curves of stub columns. The buckling strength of high strength steel beam-columns are assessed by numerical analysis used axial force, moment and curvature relationships.

  • PDF