DOI QR코드

DOI QR Code

Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios

다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출

  • Received : 2021.01.09
  • Accepted : 2021.02.26
  • Published : 2021.04.01

Abstract

This paper derives numerically new buckling Knockdown factors for the lightweight design of the composite propellant tanks for space launch vehicles. A nonlinear finite element analysis code, ABAQUS, is used for the present postbuckling analysis of composite cylinders under compressive loads. Various thickness ratios (R/t) and slenderness ratios (L/R) are considered and Single Perturbation Load Approach is applied to represent the geometric initial imperfection of the composite cylinder. For the composite cylinder with thickness ratio of 500 and slenderness ratio of 2.04, the buckling Knockdown factor derived in this work is higher by 84.38% than NASA's previous buckling design criteria. Therefore, it is investigated that a lightweight design is possible when the present Knockdown factors are used for the design of composite propellant tanks. In addition, it is shown that global buckling loads and buckling Knockdown factors decrease as the thickness ratio or slenderness ratio of composite cylinders increases.

본 연구에서는 우주 발사체의 복합재 추진제 탱크 구조의 경량 설계를 위하여 좌굴 Knockdown factor를 ABAQUS를 이용한 수치해석 기반으로 새롭게 도출하였다. 복합재 원통 구조의 다양한 두께비(R/t)와 세장비(L/R)를 적절히 고려하였으며, 기하학적 초기 결함을 Single Perturbation Load Approach를 이용하여 구현하였다. 두께비 = 500 및 세장비 = 2.04를 갖는 복합재 원통 구조의 모델의 경우, NASA의 기존 좌굴 설계 기준보다 약 84.38%만큼 좌굴 Knockdown factor가 높게 도출되어 본 연구의 좌굴 설계 기준을 이용할 경우 복합재 추진제 탱크의 경량 구조 설계가 가능함을 확인하였다. 더불어, 복합재 원통 구조의 두께비와 세장비가 각각 증가함에 따라 전역 좌굴 하중과 좌굴 Knockdown factor가 모두 감소하는 경향을 알 수 있었다.

Keywords

References

  1. Regab, M. M., Cheatwood, F. M., Hughes, S. J. and Lowry, A., "Launch Vehicle Recovery and Reuse," AIAA SPACE 2015 Conference and Exposition, August 2015.
  2. Rhee, S. Y., Kim, K. S., Yoon, Y. H. and Yi, M. K., "Current Status of Development of Composite Propellant Tanks for a Launch Vehicle," Current Industrial and Technological Trends in Aerospace, Vol. 18, No. 2, 2020, pp. 127-138.
  3. Kohsetsu, Y., "Structural System Design of Liquid Rocket," Kyushu University Press, 2013.
  4. Peterson, J. P., Seide, P. and Weingarten, V. I., "Buckling of Thin-walled Circular Cylinders," NASA SP-8007, 1968.
  5. Haynie, W. T. and Hilburger, M. W., "Comparison of Methods to Predict Lower Bound Buckling Loads of Cylinders under Axial Compression," 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 2010.
  6. Hilburger, M. W., "Developing the Next Generation Shell Buckling Design Factors and Technologies," 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, April 2012.
  7. Degenhardt, R., Kling, A. and Rohwer, K., "Probabilistic Approach for better Buckling Knock-down Factors of CFRP Cylindrical Shells," 18th Engineering Mechanics Division Conference, June 2007.
  8. Hilburger, M. W., Nemeth, M. P. and Starnes Jr, J. H., "Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures," NASA/TM-2004-212659, 2004.
  9. Hilburger, M. W., "Shell Buckling Knockdown Factor Project Overview and Status," NASA NF1676L-21449, 2015.
  10. Degenhardt, R., "New Robust Design Guideline for Imperfection Sensitive Composite Launcher Structures," 13th European Conference on Spacecraft Structures Materials and Environment Testing, April 2014.
  11. Geier, B., Meyer-Piening, H.-R. and Zimmermann, R., "On the Influence of Laminate Stacking on Buckling of Composite Cylindrical Shells subjected to Axial Compression," Composite Structures, Vol. 55, Issue 4, March 2002, pp. 467-474. https://doi.org/10.1016/S0263-8223(01)00175-1
  12. Cho, S. B., Lee, K. J. and Sun, B. C., "Development Directions of Succeeding Launch Vehicles of KSLV-II and Outlooks for Technology Advancement," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 44, Issue 8, 2016, pp. 668-674. https://doi.org/10.5139/JKSAS.2016.44.8.668
  13. https://spacelaunchreport.com/falcon9ft.html
  14. Anonymous, "Falcon User's Guide," SPACE Exploration Technologies Corp., August 2020.
  15. Huhne, C., Rolfes, R., Breitbach, E. and TeBmer, J., "Robust Design of Composite Cylindrical Shells under Axial Compression - Simulation and Validation," Thin-Walled Structures, Vol. 46, 2008, pp. 947-962. https://doi.org/10.1016/j.tws.2008.01.043
  16. Kim, H. I., Sim, C. H., Park, J. S. and Kim, D. Y., "Postbuckling Analyses and Derivations of Shell Knockdown Factors for Isogrid-Stiffened Cylinders under Compressive Force and Internal Pressure," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 48, Issue 9, September 2020, pp. 653-661. https://doi.org/10.5139/JKSAS.2020.48.9.653
  17. Sim, C. H., Park, J. S., Kim, H. I., Lee, Y. L. and Lee, K. J., "Postbuckling Analyses and Derivations of Knockdown Factors for Hybrid-grid Stiffened Cylinders," Aerospace Science and Technology, Vol. 82-83, November 2018, pp. 20-31. https://doi.org/10.1016/j.ast.2018.08.025