This thesis is to study on the prospect of contemporary and theory of contemporary Chinese Neo-liberalism philosopher in the 1990s. The previous Chinese liberalists focused only on political and cultural liberalism, neglecting economic liberalism. As a result, liberalism has not taken root in China. Therefore, the social problems of contemporary China are caused by immature and unregulated market economy controlled by the government, not by the market economy. On the other hand, the social relationship in China is not capitalistic yet. The Chinese need to take the gradual developing step to modernize China. China needs to begin an effort to reform China by the way and speed of the refolution, which lies between reform and revolution; not by making new value system, but by keeping daily ethics and rediscovering the Chinese value system, which is the same as universal ethnics. Moreover, it can solve the mental, cultural problems of modern society. Modernization will be achieved not by ruining the Chinese traditions, but by adjusting the traditions, keeping, and strengthening. Consequently, China will be able to move from agricultural absolutism to modern democracy. The democracy can exist only based on the market economy. Therefore, the goal will be accomplished by democracy based on the market economy starting from Confucian tradition.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.3
/
pp.145-151
/
2023
3D-CNN is one of the deep learning techniques for learning time series data. Such three-dimensional learning can generate many parameters, so that high-performance machine learning is required or can have a large impact on the learning rate. When learning dynamic hand-gestures in spatiotemporal domain, it is necessary for the improvement of the efficiency of dynamic hand-gesture learning with 3D-CNN to find the optimal conditions of input video data by analyzing the learning accuracy according to the spatiotemporal change of input video data without structural change of the 3D-CNN model. First, the time ratio between dynamic hand-gesture actions is adjusted by setting the learning interval of image frames in the dynamic hand-gesture video data. Second, through 2D cross-correlation analysis between classes, similarity between image frames of input video data is measured and normalized to obtain an average value between frames and analyze learning accuracy. Based on this analysis, this work proposed two methods to effectively select input video data for 3D-CNN deep learning of dynamic hand-gestures. Experimental results showed that the learning interval of image data frames and the similarity of image frames between classes can affect the accuracy of the learning model.
This study focuses on export venture firms in Daedeok Innopolis and examines the structural relationships among dynamic capability, technology commercialization competence, innovation performance, and competitive advantage. In particular, this study attempts to analyze dynamic capabilities that may affect technology commercialization competence, innovation performance, and competitive advantage. The development of the research model takes on a dynamic-capability view and is based on empirical studies regarding competitive advantage. A survey of 103 export venture firms was conducted from January 5, 2015, to February 4, 2015. A partial least squares structural equation model is used to test the relationships between constructs set in the study. The results of the study show that the dynamic capability of an export venture firm has a significant positive influence on the firm's technology commercialization competence, innovation performance, and competitive advantage. The study also finds evidence that the export venture firm's technology commercialization competence directly affects its innovation performance and competitive advantage. In addition, the findings indicate that the innovation performance of an export venture firm has a significant positive impact on the firm's competitive advantage. Overall, these findings contribute to a better understanding of the contexts in which dynamic capability represents a specific capability for export venture firms.
Among the electrode manufacturing processes for lithium-ion batteries, the drying process is crucial for production speed and process cost. Particularly, as the loading level of the electrode increases to enhance the energy density of the battery, optimizing process conditions for electrode drying becomes more critical. In this study, we compared the drying time and electrochemical performance of the positive electrode prepared at different drying temperatures. LiNi0.6Co0.2Mn0.2O2 (NCM622) was used as the active material and manufactured under various drying temperature conditions ranging from 120 ℃ to 210 ℃ at loading levels of 2.5 and 4.5 mAh cm-2. The physical and electrochemical properties of the electrodes were compared. As the loading level of the electrode increases, the drying time of the electrode also increases, but this time can be reduced by increasing the drying temperature. The drying temperature used in manufacturing the NCM622 positive electrode does not significantly affect the electrochemical performance but drying above 210 ℃ resulted in an increase in the volume resistivity of the electrode and a decrease in electrochemical performance. Accordingly, in the manufacture of high-loading electrodes, the drying temperature was increased to 190 ℃ to shorten the electrode manufacturing time without a loss of performance.
Federated learning has garnered attention as an efficient method for training machine learning models in a distributed environment while maintaining data privacy and security. This study proposes a novel FedRFBagging algorithm to optimize the performance of random forest models in such federated learning environments. By dynamically adjusting the trees of local random forest models based on client-specific data characteristics, the proposed approach reduces communication costs and achieves high prediction accuracy even in environments with numerous clients. This method adapts to various data conditions, significantly enhancing model stability and training speed. While random forest models consist of multiple decision trees, transmitting all trees to the server in a federated learning environment results in exponentially increasing communication overhead, making their use impractical. Additionally, differences in data distribution among clients can lead to quality imbalances in the trees. To address this, the FedRFBagging algorithm selects only the highest-performing trees from each client for transmission to the server, which then reselects trees based on impurity values to construct the optimal global model. This reduces communication overhead and maintains high prediction performance across diverse data distributions. Although the global model reflects data from various clients, the data characteristics of each client may differ. To compensate for this, clients further train additional trees on the global model to perform local optimizations tailored to their data. This improves the overall model's prediction accuracy and adapts to changing data distributions. Our study demonstrates that the FedRFBagging algorithm effectively addresses the communication cost and performance issues associated with random forest models in federated learning environments, suggesting its applicability in such settings.
The purpose of this study is to develop a rhythm-based music intervention protocol to enhance timing regulation in children with ADHD and investigate its feasibility. For this purpose, a three-phase study was conducted involving ADHD children and typically developing children. In the first phase, group-specific baseline measurements were taken for auditory attention (KAT), motor timing, and perceptual timing. In the second phase, a rhythm-based music intervention protocol incorporating key factors was developed. In the third phase, the developed protocol was applied to ADHD children to investigate the variables affecting timing regulation and to verify its effectiveness. Results from the first phase revealed significant differences in the timing values of children with ADHD, particularly in tasks requiring discrimination of sound duration and precision in rhythm patterns. Additionally, exploratory factor analysis of KAT results and motor/perceptual timing identified three clusters: attentional responsiveness, attentional synchronization, and attentional sophistication. In the second phase, a protocol consisting of tasks involving synchronization, attentional shifting, and rhythm production at various difficulty levels was developed and validated for expert validity. In the third phase, individual application of the protocol to children with predominantly inattentive and hyperactive-impulsive ADHD subtypes demonstrated changes in timing regulation tasks. This study provided basic data for using rhythm as an effective facilitation tool that leads from voluntary to involuntary attention in children with ADHD.
Transformer models have shown remarkable performance in extracting meaningful information from sequential input data such as text and images, and are gaining attention as end-to-end models for speech recognition. This study compared the performances of the Transformer speech recognition model and its enhanced versions, the Conformer and E-Branchformer, when applied to Korean speech recognition. Using Korean speech data from AIHub, we prepared a training set of approximately 7,500 hours and evaluated the models using the ESPnet toolkit. Additionally, we compared syllables and subwords as recognition units and analyzed the performance differences with changes in the number of tokens using Byte Pair Encoding. The results showed that the E-Branchformer achieved the best performance in Korean speech recognition and Conformer outperformed Transformer but degraded in performance for long utterances owing to cross-attention alignment errors. We aimed to determine the optimal settings by analyzing the performance changes with subword token adjustments. This study comprehensively evaluated model accuracy and processing speed to maximize the efficiency of Korean speech recognition. This is expected to contribute to the training of large-scale Korean speech recognition models and improve Conformer recognition errors. Future research should include additional experiments with diverse Korean speech datasets and enhance the recognition performance through structural improvements in the Conformer.
Purpose In a cyclosporine experiment using a robotic liquid handing system has found a deviation of its standard curve and low reproducibility of patients's results. The difference of the test is that methanol is mixed with samples and the extractions are used for the test. Therefore, we assumed that the abnormal test results came from using methanol and conducted this test. In a manual of a robotic liquid handling system mentions that we can choose several setting parameters depending on the viscosity of the liquids being used, the size of the sampling tips and the motor speeds that you elect to use but there's no exact order. This study was undertaken to confirm pipetting ability depending on types of liquids and investigate proper setting parameters for the optimum dispensing ability. Materials and Methods 4types of liquids(water, serum, methanol, PEG 6000(25%)) and $TSH^{125}I$ tracer(515 kBq) are used to confirm pipetting ability. 29 specimens for Cyclosporine test are used to compare results. Prepare 8 plastic tubes for each of the liquids and with multi pipette $400{\mu}l$ of each liquid is dispensed to 8 tubes and $100{\mu}l$ of $TSH^{125}I$ tracer are dispensed to all of the tubes. From the prepared samples, $100{\mu}l$ of liquids are dispensed using a robotic liquid handing system, counted and calculated its CV(%) depending on types of liquids. And then by adjusting several setting parameters(air gap, dispense time, delay time) the change of the CV(%)are calcutated and finds optimum setting parameters. 29 specimens are tested with 3 methods. The first(A) is manual method and the second(B) is used robotic liquid handling system with existing parameters. The third(C) is used robotic liquid handling system with adjusted parameters. Pipetting ability depending on types of liquids is assessed with CV(%). On the basis of (A), patients's test results are compared (A)and(B), (A)and(C) and they are assessed with %RE(%Relative error) and %Diff(%Difference). Results The CV(%) of the CPM depending on liquid types were water 0.88, serum 0.95, methanol 10.22 and PEG 0.68. As expected dispensing of methanol using a liquid handling system was the problem and others were good. The methanol's dispensing were conducted by adjusting several setting parameters. When transport air gap 0 was adjusted to 2 and 5, CV(%) were 20.16, 12.54 and when system air gap 0 was adjusted to 2 and 5, CV(%) were 8.94, 1.36. When adjusted to system air gap 2, transport air gap 2 was 12.96 and adjusted to system air gap 5, Transport air gap 5 was 1.33. When dispense speed was adjusted 300 to 100, CV(%) was 13.32 and when dispense delay was adjusted 200 to 100 was 13.55. When compared (B) to (A), the result increased 99.44% and %RE was 93.59%. When compared (C-system air gap was adjusted 0 to 5) to (A), the result increased 6.75% and %RE was 5.10%. Conclusion Adjusting speed and delay time of aspiration and dispense was meaningless but changing system air gap was effective. By adjusting several parameters proper value was found and it affected the practical result of the experiment. To optimize the system active efforts are needed through the test and in case of dispensing new types of liquids proper test is required to check the liquid is suitable for using the equipment.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.3
no.1
s.4
/
pp.85-96
/
2004
The study begin with a basic concept, if the occupancy length of vehicle detector is directly proportional to the delay of vehicle. That is, it analogize vehicle's delay of a occupancy time. The results of a study was far superior in the estimation of a queue length. It is a very good points the operator is not necessary to optimize s1, s2, Thdoc. Thdoc(critical congestion degree) replaced 0.7 with 0.2 - 0.3. But, if vehicles have been experience in delay was not occupy vehicle detector, the study is in existence some problems. In conclusion, it is necessary that stretch queue detector or install paired queue detector. Also I want to be made steady progress a following study relation to this study, because it is required traffic signal control on congestion.
Journal of Korean Society of Environmental Engineers
/
v.27
no.1
/
pp.1-10
/
2005
The purpose of this study was to evaluate the potential of a gamma irradiation to decompose 2,4,6-trinitrotoluene(TNT) in an aqueous solution. The decomposition reaction of TNT by gamma irradiation was a pseudo first-order kinetic over the applied initial concentrations($25{\sim}100mg/L$). The dose constant was strongly dependent on the initial TNT concentration. The removal of TNT was more efficient at pH below 3 and at pH above 11 than at neutral pH(pH 5-9). The required irradiation dose to remove over 99% of TNT was 40, 80 and 10 kGy, individually at pH 2, 7 and 13. The dose constant was increased by 1.6 fold and over 15.6 fold at pH 2 and 13, respectively, when compared with that at pH 7 When irradiation dose of 200 kGy was applied, the removal efficiencies of TOC were 91, 46 and 53% at pH 2, 7 and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of TNT and glyoxalic acid and oxalic acid were detected as organic byproducts. The results showed that a gamma irradiation was an attractive method for the decomposition of TNT in an aqueous solution. However, regarding the application of high energy radiation for the TNT decomposition and mineralization, an application of an acidic pH below 3 to the solution before irradiation should be considered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.