Decomposition of 2,4,6-Trinitrotoluene (TNT) by Gamma Ray Irradiation

감마선 조사에 의한 2,4,6-Trinitrotoluene (TNT)의 분해

  • Lee, Byung-Jin (Division of Radiation Application, Korea Atomic Energy Research Institute) ;
  • Lee, Myun-Joo (Division of Radiation Application, Korea Atomic Energy Research Institute)
  • 이병진 (한국원자력연구소 방사선이용연구부) ;
  • 이면주 (한국원자력연구소 방사선이용연구부)
  • Published : 2005.01.31

Abstract

The purpose of this study was to evaluate the potential of a gamma irradiation to decompose 2,4,6-trinitrotoluene(TNT) in an aqueous solution. The decomposition reaction of TNT by gamma irradiation was a pseudo first-order kinetic over the applied initial concentrations($25{\sim}100mg/L$). The dose constant was strongly dependent on the initial TNT concentration. The removal of TNT was more efficient at pH below 3 and at pH above 11 than at neutral pH(pH 5-9). The required irradiation dose to remove over 99% of TNT was 40, 80 and 10 kGy, individually at pH 2, 7 and 13. The dose constant was increased by 1.6 fold and over 15.6 fold at pH 2 and 13, respectively, when compared with that at pH 7 When irradiation dose of 200 kGy was applied, the removal efficiencies of TOC were 91, 46 and 53% at pH 2, 7 and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of TNT and glyoxalic acid and oxalic acid were detected as organic byproducts. The results showed that a gamma irradiation was an attractive method for the decomposition of TNT in an aqueous solution. However, regarding the application of high energy radiation for the TNT decomposition and mineralization, an application of an acidic pH below 3 to the solution before irradiation should be considered.

본 연구의 목적은 수용액상의 TNT를 분해하기 위한 감마선 조사의 적용가능성을 조사하는 것이었다. 연구 결과, 감마선 조사에 의한 TNT 분해반응은 유사일차속도반응식을 따르는 것으로 나타났으며, 반응속도를 나타내는 조사상수는 초기 TNT 농도에 강한 의존성을 나타내는 것으로 조사되었다. TNT를 함유한 시료의 pH를 강염기성으로 조정할 경우 TNT의 가수분해가 진행되었으며, 이로 인한 TNT에 함유된 일부 질소성분이 아질산성 질소와 질산성질소로 탈리되어 이온상태로 존재하는 것을 확인할 수 있었다. 또한 UV에 의한 자외선 흡수 특성이 변하는 것을 확인하였다. 감마선 조사에 의한 TNT의 제거는 pH 12 이상의 강염기성 조건에서 가장 우수하였고, 중성 부근 pH에서 가장 저조한 것으로 나타났으며, 99%의 TNT를 제거하기 위해서는 pH 2, 7, 13을 적용하였을 경우에 각각 40, 80, 10 kGy의 조사량이 요구되는 것으로 조사되었다. TOC의 제거는 pH 2의 강산성 조건에서 가장 효과적이었으며, 200 kGy를 조사하였을 때 90% 이상의 TOC를 제거할 수 있는 것으로 나타났다. 그러나 중성 또는 강염기성 pH를 적용하였을 때에는 200 kGy의 높은 조사량을 적용하여도 TOC 제거율이 약 50% 내외로 완전한 TNT의 무기화는 기대하기 어려운 것으로 조사되었다. TNT의 분해과정에서 생성되는 분해산물 중 질소성분으로는 암모니아성 질소, 아질산성 질소, 질산성 질소 등이 검출되었고, 유기성 물질로는 glyoxalic acid와 oxalic acid가 검출되었으며, pH 2, 조사량 200 kGy를 적용하였을 경우에는 glyoxalic acid와 oxalic acid 또한 완전히 제거되는 것으로 나타났다.TEX> ~ FA-$N_{2}$ > RTA-$N_{2}$ 순으로 성장하였다. 하지만 질소분위기에서 열처리한 박막은 산소분위기의 열처리경우에 비해 박막내의 산소성분의 부족으로 인한 그레인 사이의 결함이 많이 관찰되었다.아제의 경우는 $30{\sim}35^{\circ}C$에서 2일간(日間)이었다. 5. Asp. neger CF-21 변이균주(變異菌株)의 산생성력(酸生成力)은 밀기울국(麴)에서 $30^{\circ}C$로 2일후(日後)에 최고(最高)에 달(達)하였으며 밀가루국(麴)에서는 $30^{\circ}C$로 3일후(日後)에 최고(最高)값을 나타내었다. 최적조건(最適條件)에서의 산생성력(酸生成力)은 밀기울국(麴)과 밀가루국(麴) 사이에 차(差)가 별(別)로 없었다.果)에서 총지질(總脂質)을 구성(構咸)하는 지방산(脂肪酸) 조성(組成)은 $C_{18:2}$산(酸), $C_{16:0}$산(酸)의 순(順)으로 그 함량(含最)이 맞은데 비(比)하여 각획분(各劃分)의 지질(脂質)을 구성(構成)하는 지방산(脂肪酸) 조성(組成)은 $C_{16:0}$산(酸), $C_{18:2}$산(酸)의 순(順)으로 그 함량(含量)이 많은 것으로 나타났으며 동결건조후(凍結乾燥後) 저장(貯藏)하는 동안에$C_{18:2}$산(酸), $C_{18:3}$산(酸)의 함량(含量)이 계속(繼續) 감소(減少)하고 있었다. 5. 4-monomethylsterol fraction에는 cycloartenol(20.6%)이 비교적(比較的) 높은 함량(含量)으로 함유(含有)

Keywords

References

  1. Berg, J., Martin, D., and Roberts, P. V., 'Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide,' Appl. Environ. Microbiol, 44, 814-819(1982)
  2. Won, W. D., Disalvo, L. H., and Ng, J., 'Toxicity and mutagenicity of TNT and its microbial metabolites,' Appl. Environ. Microbiol, 31, 576-580(1976)
  3. Wellington, D. R., Mitchell, N. R., 'In-vitro cytotoxicity of certain munitions nitroaromatic compounds,' Chemosphere, 23, 363-368(1991) https://doi.org/10.1016/0045-6535(91)90190-O
  4. Kaplan, D. L., Kaplan, A. M., '2,4,6-trinitrotoluene surfactant complexes: Decomposition, mutagenicity, and soil leaching studies,' Environ. Sci. Technol, 16, 566-571 (1982) https://doi.org/10.1021/es00103a006
  5. Sittig, M., Handbook of toxic and hazardous chemicals and carcinogens, 2nd ed., Noyes Publ., NJ(1985)
  6. Stewart, A., Witts, L. T., Higgine, G., and O'Brien, J. R. P., 'Some early effects of exposure to TNT,' Br J. Ind. Med, 2, 74-79(1945)
  7. Alnaizy, R. and Akgerman, A., 'Oxidative treatment of high explosives contaminated wastewater,' Water Res., 33(9), 2021-2030(1999) https://doi.org/10.1016/S0043-1354(98)00424-2
  8. McLellan, W., Hartley, W. R., and Brower, M., Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine, Technical Report PB90-273533; Office of Drinking Water, US Environmental Protection Agency, Washington, DC(1988)
  9. Byrd, J. and Humphreys, J., Proceedings of the 12th International Incineration Conference Knoxville, TN, May 3-7, pp. 621-624(1993)
  10. Zoh, K. D. and Stenstrom, M. K., 'Fenton oxidation of hexahydro-l,3,5-trinitro-l,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX),' Water Res., 36, 1331-1341(2002) https://doi.org/10.1016/S0043-1354(01)00285-8
  11. Spalding, R. F. and Fulton, J. W., 'Groundwater munitions residues and nitrate near Grand Island, Nebraska, USA,' J. Contam. Hydrol, 2, 139-153(1988) https://doi.org/10.1016/0169-7722(88)90004-6
  12. Boopathy, R. and Kulpa, C. F., 'TNT as a sole nitrogen source for a sulfate reducing bacterium Desulfovi-briosp. (B strain) isolated from an anaerobic digester,' Curr. Microbiol, 25, 235-241(1992) https://doi.org/10.1007/BF01570724
  13. Boopathy, R., Manning, J. F., Montemagno, C., and Kulpa, C. F., 'Metabolism of 2,4,6- trinitrotoluene by a Pseudomonas consortium under aerobic conditions,' Curr. Microbiol, 28, 131-137(1994) https://doi.org/10.1007/BF01571053
  14. Rieger, P. G. and Knackmuss, H. J., Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil, In J C Spain (ed.) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp. 1-18(1995)
  15. Patterson, J., Shapira, N. I., Brown, J., Duckert, W., and Poison, J., State of the art military explosives and propellants industry volume HI. Wastewater treatment Technical Report PB-265042, US Environmental Protection Agency, Washington, DC, p. 92(1976)
  16. Heilmann, H. M, Wiesmann, U., and Stenstrom, M. K., 'Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon,' Environ. Sci. Technol., 30(5), 1485-1492(1996) https://doi.org/10.1021/es9504101
  17. Li, Z. M., Comfort, S. D., and Shea, P. J., 'Destruction of 2,4,6-trinitrotoluene by Fenton oxidation,' J. Environ. Qual., 26, 480-487(1997) https://doi.org/10.2134/jeq1997.00472425002600020020x
  18. Patterson, W. E. and Phelan P. F., Proceedings of the 12th International Incineration Conference Knoxville, TN, May 3-7, pp. 625-629(1993)
  19. Liou, M. J., Lu, M. C, and Chen, J. N., 'Oxidation of explosives by Fenton and photo-Fenton processes,' Water Res., 37, 3127-3179(2003)
  20. Bose, P., Glaze, W. H., and Maddox, D. S., 'Degradation of RDX by various advanced oxidation processes: I. Reaction rates,' Water Res., 32(4), 997-1004(1998) https://doi.org/10.1016/S0043-1354(97)00307-2
  21. Chitose, N., Ueta, S., Seino, S., and Yamamoto, T. A., 'Radiolysis of aqueous phenol solutions with nanopar-ticles.: 1. Phenol degradation and TOC removal in solutions containing $TiO_2$ induced by UV, Y-ray and electron beams,' Chemosphere, 50, 1007-1013(2003) https://doi.org/10.1016/S0045-6535(02)00642-2
  22. Jung, J., Yoon, J. H., Chung, H. H., and Lee, M. J., 'Comparative study of $H_2O_2$ and $O_3$ effects on radiation treatment of TCE and PCE,' Chemosphere, 51, 881-885(2003) https://doi.org/10.1016/S0045-6535(03)00039-0
  23. Gehringer, P., Proksch, E., Szinowatz, W., and Eschweiler, H., 'Decomposition of trichloroethylene and tetrachloro-ethylene in drinking water by a combined radiation-ozone treatment,' Water Res., 22, 645-646(1988) https://doi.org/10.1016/0043-1354(88)90067-X
  24. Gehringer, P. and Matschiner, H., 'Radiation induced pollutant decomposition in water,' Water Sci. Technol., 37(8), 195-201(1998)
  25. Mincher, B. J., Brey, R. R., Rodriguez, R. G., Pristupa, S., and Ruhter, A., 'Increasing PCB radiolysis rates in transformer oil,' Radial Phys. Chem., 65, 461-465(2002) https://doi.org/10.1016/S0969-806X(02)00361-4
  26. Mucka, V., Silber, R., Pospisil, M., Camra, M., and Bartonicek, B., 'Radiation degradation of polychlori-nated biphenyls,' Radial Phys. Chem., 57, 489-493 (2000) https://doi.org/10.1016/S0969-806X(99)00477-6
  27. American Public Health Association; American Water Works Association; Water Environmental Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, DC(1998)
  28. Woods, R. J. and Pikaev, A. K., Applied Radiation Chemistry: Radiation Proceeding. Wily, N.Y.(1994)
  29. Kurucz, C. N., Waite, T. D., Otano, S. E., Cooper, W. J., and Nickelsen, M. G., 'A comparison of large-scale electron beam and bench-scale $^{60}Co$ irradiations of simulated aqueous waste streams,' Radiat. Phys. Chem., 65, 367-378(2002) https://doi.org/10.1016/S0969-806X(02)00337-7
  30. Mincher, B. J. and Curry, R. D., 'Considerations for choice of a kinetic fig. of merit in process radiation chemistry for waste treatment,' Appl. Radial Isot., 52, 189-193(2000) https://doi.org/10.1016/S0969-8043(99)00161-X
  31. Mincher, B. J., Brey, R. R., Rodriguez, R. G., Pristupa, S., and Ruhter, A., 'Increasing PCB radiolysis rates in transformer oil,' Radial Phys. Chem, 65, 461-465(2002) https://doi.org/10.1016/S0969-806X(02)00361-4
  32. Getoff, N., 'Radiation-induced degradation of water pollutants-state of the art,' Radial Phys. Chem., 47(4), 581-593(1996) https://doi.org/10.1016/0969-806X(95)00059-7
  33. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., 'Critical review of Rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.$O^-$) in aqueous solution,' J. Phys. Chem. Ref. Data., 17(2), 533-886(1983)
  34. Curry, R. D. and Mincher, B. J., 'The status of PCB radiation chemistry research; Prospects for waste treatment in nonpolar solvents and soil,' Radial Phys. Chem, 56, 493-502(1999) https://doi.org/10.1016/S0969-806X(99)00336-9